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0
Introduction
0.0 Psychology versus Complex Systems Science

Over the last century, psychology has become much less of an art and much more of a science.
Philosophica speculation is out; data collection isin. In many ways this has been a very postive
trend. Cognitive science (Mandler, 1985) has given us scientific analyses of avariety of
intelligent behaviors: short-term memory, language processing, vison processing, etc. And
thanks to molecular psychology (Franklin, 1985), we now have arudimentary understanding of
the chemical processes underlying persondity and mentd illness. However, there isagrowing
feding -- particularly among non-psychologists (see e.g. Sommerhoff, 1990) -- that, with the
new emphass on data collection, something important has been logt. Very little attention is paid
to the question of how it dl fitstogether. The early psychologists, and the classica philosophers
of mind, were concerned with the genera nature of mentality as much as with the mechaniams
underlying specific phenomena. But the new, scientific psychology has made disappointingly
little progress toward the resolution of these more generd questions.

One way to ded with this complaint isto dismiss the questions themselves. After dl, one might
argue, ascientific psychology cannot be expected to ded with fuzzy philosophica questions that
probably have little empirical Sgnificance. It isinteresting that behaviorists and cognitive
scientists tend to be in agreement regarding the question of the overal structure of the mind.
Behaviorigs believe that it is meaningless to gpesk about the structures and processes underlying
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behavior -- on any level, generd or specific. And many cognitive scientists believe that the mind
is ahodge-podge of specid-case dgorithms, pieced together without any overarching structure.
Marvin Minsky has summarized this position nicdy in his Society of Mind (1986).

Itisnot apriori absurd to ask for general, philosophica ideas that interlink with experimenta
details. Psychologists tend to become annoyed when their discipline is compared unfavorably
with physics -- and indeed, the comparisonis unfair. Experimenta physcists have many
advantages over experimental psychologigts. But the facts cannot be ignored. Physics talks about
the properties of baseballs, semiconductors and solar systems, but aso about the fundamental
nature of matter and space, and about the origin of the cosmos. The physics of basebdl is much
more closdy connected to experimenta data than is the physics of the firgt three minutes after
the Big Bang -- but there is a continuum of theory between these two extremes, bound together
by a common philosophy and a common set of tools.

It seems that contemporary psychology smply lacks the necessary tools to confront
comprehensive questions about the nature of mind and behavior. That iswhy, adthough many of
the topics consdered in the following pages are classic psychologica topics, ideas from the
psychologicd literature are used only occasiondly. 1t seems to me that the key to understanding
the mind lies not in contemporary psychology, but rather in anewly emerging field which | will
cdl -- for lack of abetter name -- "complex sysems science.” Here"complex does not mean
"complicated", but rather something like "full of diverse, intricate, interacting structures'. The
basic ideaisthat complex systems are sysemswhich -- like immune systems, ecosystems,
societies, bodies and minds -- have the capacity to organize themselves. At present, complex
systems science is not nearly so well developed as psychology, let done physics. Itisnot a
tightly-knit body of theorems, hypotheses, definitions and methods, but rather aloose collection
of ideas, observations and techniques. Therefore it is not possible to "apply” complex systems
science to the mind in the same way that one would apply physics or psychology to something.
But complex systems science is valuable nonetheless. It provides a rudimentary language for
deding with those phenomena which are unique to complex, sdlf-organizing sysems And |
suggest that it is precisaly these agpects of mentality which contemporary psychology leaves out.

More specificdly, the ideas of the following chapters are connected with four

"complex sysems' theories, intuitively and/or in detall. These are; the theory of pattern
(Goertzd, 1991), dgorithmic information theory (Chaitin, 1987), the theory of multiextrema
optimization (Weisbuch, 1991; Dixon and Szego, 1978; Goertzel, 1989), and the theory of
automata networks (Derrida, 1987; Weisbuch, 1991).

The theory of pattern provides a generd yet rigorous way of talking about concepts such as
gructure, intelligence, complexity and mind. But dthough it is mathematically precisg, it is
extremdy abdiract. By connecting the theory of pattern with dgorithmic information theory one
turns an abgiract mathematica andysis of mind into a concrete, computationa analysis of mind.
This should make clear the limited sense in which the present theory of mind is computationd, a
point which will be elaborated below. Most of the ideas to be presented are not tied to any
particular model of computation, but they are discussed in terms of Boolean automata for sake of
concreteness and smplicity.
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Pattern and dgorithmic complexity give us arigorous framework for discussing various
aspects of intdligence. The theory of multiextrema optimization, which is closely tied to the
abgiract theory of evolution (Kauffman, 1969; Langton, 1988), gives us away of understanding
some of the actud processes by which intelligences recognize and manipulating patterns.
Perception, control, thought and memory may dl be understood as multiextrema optimization
problems; and recent theoretical and computationa results about multiextrema optimization may
be interpreted in this context. And, findly, the theory of automata networks -- discussed in
Appendix 2 -- givesa context for our generd modd of mind, which will be cdled the "master
network". The master network is not merely a network of smple elements, nor a computer
program, but rather a network of programs. an automata network. Not much is known about
automata networks, but it is known that in many circumstances they can "lock in" to complex,
sdf-organizing states in which each component program is continualy modified by its neighbors
in a coherent way, and yet doesitsindividud task effectively. This observation gregtly increases
the plausibility of the master network.

0.1 Mind and Computation

The andysis of mind to be given in the following chaptersis expressed in computationd
language. It istherefore implicitly assumed that the mind can be understood, to within ahigh
degree of accuracy, as asystem of interacting dgorithms or automata. However, the concept of
"dgorithm" need not be interpreted in anarrow sense. Penrose (1989), following Deutsch
(1985), has argued on dtrictly physica grounds that the standard digital computer is probably not
an adequate modd for the brain. Deutsch (1985) has proposed the "quantum computer” as an
dternative, and he has proved that -- according to the known principles of quantum physics -- the
quantum computer is cgpable of amulating any finite physica sysem to within finite accuracy.

He has proved that while a quantum computer can do everything an ordinary computer can, it
cannot compute any functions besides those which an ordinary computer can compute (however,
quantum computers do have certain unique properties, such as the ability to generate "truly
random’ numbers). Because of Deutsch's theorems, the assertion that brain functionis
computation is not a psychologica hypothesis but a physica, mathematica fact. It follows that
mind, insofar asit reduces to brain, is computational.

| suspect that most of the structures and processes of mind are indeed explicable in terms of
ordinary digital computation. However, | will suggest that the mind has at least one aspect which
cannot be explained in these terms. Chapter 11, which deds with consciousness, isthe only
chapter which explicitly assumes that the mind has to do with quantum computation rather than
smply digita computation.

Many people are deeply skeptica of the idea that the mind can be understood in terms of
computation. And thisis undersandable. The brain is the only example of intelligence that we
know, and it doesn't look likeit's executingagorithms: it is alargely incomprehensble mass of
sf-organizing eectrochemica processes. However, assuming that these eectrochemical
processes obey the laws of quantum physics, they can be explained in terms of a system of
differentid equations derived from quantum theory. And any such system of differentiad
equations may be approximated, to within any desired degree of accuracy, by afunction that is
computable on a quantum computer. Therefore, those who claim that the human mind cannot be
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understood in terms of computation are either 1) denying that the laws of quantum physics, or
any smilar mathematica laws, gpply to the brain; or 2) denying that any degree of understanding
of the brain will yield an understanding of the human mind. To me, neither of these dternatives
seems reasonable.

Actudly, thereis alittle more to the matter than this smple analyss admits. Quantum physics
is not acomprehensive theory of the universe. It seemsto be able to ded with everything except
gravitation, for which the Generd Theory of Redivity is required. In fact, quantum theory and
generd rdldivity are in contradiction on severd crucid points. The effect of gravity on processes
occurring within individua organismsis smal and easily accounted for, so these contradictions
would seem to beirrelevant to the present consderations. But some scientists -- for instance,
Roger Penrosg, in his The Emperor's New Mind (1989) -- believe that the combination of
quantum physics with generd relativity will yied an entirdly new understanding of the physics
of the brain.

It isworth asking: if Penrose were right, what effect would this have on the present
cons derations? Quantum theory and generd relativity would be superseded by anew Grand
Unified Theory, or GUT. But presumably it would then be possible to definea GUT computer,
which would be capable of approximating any system with arbitrary accuracy according to the
GUT. Logicadly, the GUT computer would have to reduce to a quantum computer in those
gtuations for which generd rdativigtic and other non-quantum effects are negligible. 1t would
probably have al the capacities of the quantum computer, and then some. And in this case,
virtualy none of the arguments given here would be affected by the replacement of quantum
physics with the GUT.

To repedt: the assumption that brain processes are computation, if interpreted correctly, is not
at al dubious. It is not a metaphor, an analogy, or atentative hypothesis. It isaphysicd,
mathematical fact. If one assumes -- aswill be done explicitly in Chapter 4 -- that eech mind is
associated with the structure of a certain physical system, then the fact that a sufficiently
powerful computer can approximate any physical system with arbitrary precison guarantees that
any mind can be modeled by a computer with arbitrary precison. Whether thisis a useful way to
look at the mind is another question; but the vdidity of the computationa gpproach to mind is
not open to serious scientific dispute.

0.2 Synopsis

Since the arguments to follow are somewhat unorthodox, it seems best to statethe main gods
in advance:

1) To give a precise, genera mathematica definition of inteligence which is "objective” in that
it does not refer to any particular culture, species, etc.,

2) Tooutline aset of principles by which amachine (a quantum computer, not necessarily a
Turing machine) fulfilling this definition could be congtructed, given gppropriate technology,

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 10

3) To put forth the hypothesis that these same principles are acrucid part of the structure of any
intelligent system,

4) To ducidate the nature of and relationships between the concepts involved in these principles:
induction, deduction, andlogy, memory, perception, motor control, optimization, CONSCioUsSNESS,
emation,....

Theline of argument leading up to these four godsis as follows. Chapters

1 through 4 lay the conceptua foundations for the remainder of the book. Basic mathematical
concepts are reviewed: of Turing machines, dgorithmic information pattern, and aspects of
randomness and optimization. This theoretical framework is used to obtain precise definitions of
"intelligence’, "complexity”, "sructure’, "emergence," and other crucid idess.

For ingtance, the structure of an entity is defined asthe set of dl patternsin that entity; and the
Sructurd complexity of an entity is defined as (roughly spesking) the total dgorithmic
complexity of al the patterns comprising the structure of that entity. The concept of
unpredictability is anayzed according to the theory of pattern, and intelligence is defined as the
ability to optimize complex functions of unpredictable environments.

In Chapters 5 through 8, the framework erected in the previous chaptersis applied to what
Peirce called the three fundamenta forms of logic: induction, deduction and andlogy. Each of the
formsis characterized and explored in terms of agorithmic information theory and the theory of

pattern. Induction is defined as the construction, based on the patterns recognized in the past, of a
coherent modd of the future. It is pointed out that induction cannot be effective without a
reliable paitern recognition method to provide it with data, and that induction is a necessary
component of pattern recognition and motor control.

Andogy is characterized, roughly, as reasoning of the form "where one smilarity has been
found, look for more". Three highly generd forms of andogy are isolated, andyzed in terms of
the theory of pattern, and, findly, synthesized into agenera framework which is philosophicaly
smilar to Gentner's (1983) "structure-mapping” theory of andlogy. Ededman's theory of Neurd

Darwinism is used to show that the brain reasons andogicaly.

The structure of long-term memory is anadlyzed as a corollary of the nature of analogica
reasoning, yieding the concept of a structurdly associative memory -- amemory which stores
each entity near other entities with smilar structures, and continudly sdf-organizes itsdf so as

to maintain this Sructure.

Findly, deduction is analyzed as a process which can only be ussful to intelligence insofar as

it proceeds according to an axiom system which is amenable to andogica reasoning. This

andysisisintroduced in the context of mathematical deduction, and then made precise and
generd with the help of the theory of pattern.

Chapters 9 and 10 ded with the perceptua-motor hierarchy, the network of pattern-
recognition processes through which an intelligence builds a modd of the world. This process

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE

makes essentia use of the three forms of reasoning discussed in the previous chapters; and it is
as0 extremely dependent on concepts from the theory of multiextrema optimization.

The perceptua hierarchy is, it is proposed, composed of a number of levels, each one
recognizing paiterns in the output of the level below it. This pattern recognitionis executed by
applying an gpproximation to Bayes rule from eementary probability theory, which cannot be

effective without aid from induction and deduction. The activity of the various levelsis regulated
according to a"multilevel methodology" (Goertzdl, 1989) which integrates top-down and
bottom-up control. Neurologica data supports this genera picture, and recent computer vision
systems based on miniature "perceptua hierarchies' have been very effective,

The motor control hierarchy is closaly linked with the perceptua hierarchy and operates
somewhat smilarly, the difference being that its task is not to recognize patterns but rather to
sdect the actions which best fulfill the criteriaassgned to it. Building on the brain modd given

in Chapter 6, specific modd for the brain's perceptua-motor hierarchy is proposed.

Chapter 11 dedls with consciousness and emoation -- the two essentia aspects of the
congtruction of the subjective, interior world. Consciousnessis andyzed as a process residing on
the higher levels of the perceptua hierarchy, a process whose function is to make definite
choices from among various possihilities. It is suggested that complex coordination of the
perceptud hierarchy and the motor control hierarchy may not be possible in the absence of
consciousness. And, following Goswami (1990) and others, it is argued that an ordinary
computer can never be conscious -- but that if a computer is built with smal enough parts packed
cosely enough together, it automaticaly ceases to function as a Turing machine and becomes
fundamentaly a"quantum computer” with the potentia for consciousness. The problem of
reconciling this quantum theory of consciousness with the psychologica and biologica
conceptions of consciousness is discussed.

Following Paulhan (1887) and Mandler (1985), emotion is characterized as something which
occurs when expectations are not fulfilled. It is argued that human emotion hasa"hot" and a
"cold" aspect, and that whereasthe "cold" aspect is a Structure that may be understood in terms
of digita computation, the "hot" aspect is apeculiar chemical processthat is closely related to
CONSCiOUSNESS.

Finally, Chapter 12 presents the theory of the master network : anetwork ofautomatawhich
achievesinteligence by the integration of induction, deduction, anaogy, memory, perception,
control, consciousness and emoetion. It is pointed out that, according to the definition of
intelligence given in Chapter 4, a sufficiently large master network will inevitably be intdligent.
And it is aso observed thet, if oneis permitted to postulate a"sufficiently large’ network, nearly
al of the dructure of the master network is superfluous: intelligence can be achieved, dbeit far
lessefficiently, by amuch smpler sructure. Findly, it is suggested that, in order to make sense
of this observation, one mugt bring physicsinto the picture. It is not physicaly possible to build
an arbitrarily large network that functions fast enough to survive in redlity, because specia
relativity places restrictions on the speed of information transmission and quantum theory places
redirictions on the minimum space required to store a given amount of information. These
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restrictions give rise to the hypothesis that it is not physicdly possble to build an inteligent
machine which lacks any one of the main components of the master network.

It must be emphasized that these various processes and structures, though they are andyzed in
separate chapters here, need not be physically separate in the body of any given intelligence. For
one thing, they are intricately independent in function, so why not in implementation? And,
furthermore, it seems unlikely that they are physicdly separate in the human brain. In the find

section, | give ademondration of how one may design an intdligent machine by combining the
theory of the magter network with Edelman's Neurad Darwinism. In this demondtration, the
various components of the master network are bound together according to an implementation
specific logic.

Findly, it must also be emphasized that the master network is not a physical structure but a
pattern, an abstract logica structure -- a pattern according to which, or so | claim, the system of
paiterns underlying inteligent behavior tends to organize itself. It conssts of two large networks
of agorithms (the structuraly associative memory and the perceptua-motor hierarchy), three
complex processes for tranamitting information from one network to another (induction,
deduction, andogy), and an array of specid- purpose auxiliary optimization agorithms. Each of
these networks, processes and agorithms may be redized in avariety of different ways-- but
each has its own distinctive structure, and the interconnection of the five dso hasit own
digtinctive structure. Of course, an intelligence may aso possess avariety of other structures --
unrelated structures, or structuresintricately intertwined with those described here. My
hypothesisis only that the presence of the master network in the structure of an entity isa

necessary and sufficient condition for that entity to be intelligent.

0.3 Mathematics, Philosophy, Science

A scientific theory must be testable. A test can never prove atheory true, and since dl but the
smplest theories can be endlesdy modified, atest canrarely prove a complex theory false. But, at
very leadt, atest can indicate whether atheory is sensble or not.

| am sorry to say that | have not been able to design a"crucid experiment” -- a practica test
that would determine, al at once, whether the theory of the master network is sensible or not.
The stuation israther smilar to that found in evolutionary biology. Thereisno quick and easy
way to test the theory of evolution by natura sdection. But there are numerous pieces of
evidence, widdly varying in naure, rdiability and rdevance. How to combine and weight these
various pieces of evidence is amatter of intuition and persona bias.

| certainly do not mean to imply that the theory of the master network is as well supported as
the theory of evolution by naturd sdlection -- far from it. But it is not implausble that, in the

near future, various sorts of evidence might combine to form afarly convincing case for the

theory. In this sense, | think the idess proposed here are testable. Whether there will ever bea
more effective way to test hypotheses about sdlf- organizing systems such as minds and

ecosystemsiis anybody's guess.
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1
Mind and Computation
1.0 Rules
What does it mean to tell someone exactly what to do?

Sixty years ago no one could give this query a plausible response. Now, however, we have a
generdly accepted definition: a set of indructionsis exact if some computer can follow them.
We have aword, algorithm, which isintended to refer to a completely exact set of instructions.
Thisisimpressvely eegant. But therés a caich -- this gpproach is meaningful only in the context
of atheory explaining exactly what a computer is. And it turns out that this problem is not so
graightforward as it might seem.

Note that one cannot say "a set of indructionsis exact if every computer can follow them.”
Obvioudy, computers come in different Sizes and forms. Some are very smdl, with little
memory or processing power. Some, like the computer chipsingdled in certain televisons and
cars, are dedicated to one or two specific purposes. If there were little or nothing in common
between the various types of computers, computer science would not deserve the label "science.”
But it ssemsthat many computers are so powerful that they can smulate any other computer.
Thisiswhat makes theoretical computer science possible. Computers of this sort are called
"universal computers” and were firgt discussed by Alan Turing.

What is now called the Turing machine is the Smple device congsting of:

1) aprocessing unit which computes according to some formula of Boolean agebra

2) avery long tape divided into squares, each square of which ismarked either zero or one

3) atape head which can move, read from and write to the tape

For instance, the processing unit might contain ingructionslike:

If the tape reads D and -A+(B-C)(D+E)=(R-J), then move tape to the left, cal what is read
C, move the tape two to the right,

and write (D-B)C on the tape.

The Boolean formulaiin the processing unit isthe "program” of the Turing machine: it telsit
what to do. Different programs lead to different behaviors.

Assuming that the tape head cannot move arbitrarily fagt, it is clear that any specific program,

running for afinite time, can only dedl with afinite section of the two tgpes. But theoretically,
the tapes must be alowed to be as long as any program will require. Thus one often refersto an
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"infinitely long" tape, even though no particular program will ever require an infinitely long tape
in any particular Stuation.

At firgt, Turing's colleagues were highly skeptica of his contention that this smple machine
was cgpable of executing any exact sequence of ingructions. But they were soon convinced that
the behavior of any conceivable computer could be smulated by some Turing machine, and
furthermore that any precise mathematica procedure could be carried out by some Turing
machine. To remove al doubt, Turing proved that a certain type of Turing machine, now cdled a
"universd Turing maching’, was capable of amulating any other Turing machine. One merely
had to feed the universal Turing machine a number encoding the properties of Turing machine X,
and then it would act indigtinguishably from Turing machine X.

PUT THE CUP ON THE TABLE

Most people who have studied the literature would concur: no one has been able to come up
with aset of ingructionswhich is obvioudy precise and yet cannot be programmed on a Turing
machine. However, agreement is not quite universal. For instance, the philosopher Hubert
Dreyfus (1978) has written extensvely about the inability of existing computers to see, move
around, or make practical decisonsin the red world. From his point of view, it isreveding to
observe that, say, no Turing machine can follow the ingtruction: put the cup on the table.

The problem is not, of course, that a Turing machine doesn't have any way to pick up a cup.
One could easily connect arobot arm to a computer in such away that the output of the
computer determined the motions of the robot. Thisis the state of the art in Japanese factory
design. And even if current technology were not up to the task, the fact that it could be done
would be enough to vindicate Turing's claim.

But could it, actualy, be done? What is redly involved here? When | tel someone to "put the
cup onthetable" | am redly telling them "figure out what | am talking about when | say 'the
cup' and 'the table' and 'on', and then put the cup on the table." Even if we give acomputer a
robot eye, it isnot easy to tel it how to locate a cup lying in the middle of amessy floor. And it
is evenharder to tell a computer how to distinguish a cup from abowl. In fact, itishard to tdl a
person how to digtinguish a cup from abowl. Thisisamatter of culture and language. We
smply learn it from experience.

One might take dl this as proof that "put the cup on the tabl€" is not actudly a precise
ingruction. Or, on the other hand, one might maintain that a Turing machine, provided with the
proper program, could indeed follow the ingtruction.  But thereis an eement of circular
reasoning in thefirg aternative. "Put the cup on the table” is very precise to many peoplein
many Situations. To say that it is not precise because a Turing machine cannot understand it isto
define precigon in terms of the Turing machine, in contradiction to common sense. And the
second dternative presupposes agreet ded of faith in the future of artificia intelligence. The
hypothesis that the Turing machine can smulate any computer and execute any set of precise
mathematicd indructionsis very wdl established. But the hypothess that the Turing machine
can execute any et of precise ingructionsis alittle shakier, snceit is not quite clear what
"precison” is supposed to mean.
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In sum: thereis gill plenty of room for philosophica debate about the meaning of the Turing
machine. In the Introduction | mentioned Deutsch's result that according to quantum theory any
finite physica system can be smulated by a quantum computer. Coupled with the fact thet a
guantum computer cannot compute any functions besides those which a Turing machine can
compuite, this would seem to provide afairly strong argument in favor of Turing's hypothess.
But, of course, physics can never truly settle a philosophical question.

BRAIN ASTURING MACHINE

In apaper of legendary difficulty, McCulloch and Pitts (1943) attempted to demondtrate that
the human brain isa universd Turing machine. Toward this end, they adopted a greetly
overamplified modd of the brain, ignoring the intricacies of neurochemistry, perception,
locdlization, and the like. The McCulloch-Fitts brain is a network of dots and lines, each dot
gtanding for a neuron and each line standing for a connection between neurons. It changesin
discrete jumps: time O, then time 1, then time 2, and so on. Each neuron operates according to
"threshold logic": when the amount of charge contained in it exceeds a certain threshold T, it
sends dl its charge out to the neurons it is connected to. What McCulloch and Fitts proved is that
auniversal Turing machine can be condructed using a neura network of this sort instead of a

program.

Some neuroscientists have protested that this sort of "neurd network™ has nothing to do with the
brain. However, thisis smply not the case. It is clear that the network captures one of the most
prominent structures of the brain. Precisely what role this structure plays in the brain's activity
remains to be seen. But it is interesting to see how tremendoudy powerful this one structure is,
al by itsdf.

As mentioned above, there have been numerous efforts to form biologicaly redigtic neurd
network models. One approach which has been taken is to introduce random errors into various
types of smulated neura networks. Thisidea has led to a vauable optimization technique called
"dmulated anneding” (Aarts et a 1987), to be considered below.

1.1 Stochastic and Quantum Computation

When noise is added to the M cCullough-Fitts network, it is no longer a Turing machine. Itisa
stochastic computer -- acomputer which involves chance as well asthe precise following of
ingructions. The error-ridden neurd network is merely one type of stochastic computer. Every
real computer is a stochastic computer, in the sensethat it is subject to random errors. In some
gtuaions, randomnessis a nuisance; one hopes it will not interfere too much with computation.
But in other Stuations, chance may be an essentia part of computation. Many Turing machine
agorithms, such as Monte Carlo methods in numericad andysis, use various mathematica ruses
to smulate stochadticity.

As| will argue later, one may view randomnessin the neurd network as ablessing in disguise.
After dl, one might well wonder: if the brain is a computer, then where do new ideas come
from? A determinigtic function only rearranges itsinput. Isit not possble that innovation
involves an dement of chance?
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One may define astochadtic Turing machine as a computer identica to a Turing machine
except that its program may contain references to chance. Forinstance, its processng unit might
contain commands like:

If the tape reads D and - A+(B-C)(D+E)=(R-J), then move tape to the left with
probability 50% and move it to the right with probability 50%, cdl what isread C, move the
tape two to the right, write (D-B)Con the tape with probability 25% and write C on the tape
with probability 75%.

One may congtruct atheory of stochastic Turing machines parald to the ordinary theory of
computation. We have seen that a universa Turing machine can follow any precise set of
indructions, at least in the sense that it can Smulate any other computer. Smilarly, it can be
shown that there isa universa stochagtic Turing machine which can smulate any precise set of
ingructions involving chance operations.

QUANTUM COMPUTATION

If the universe were fundamentaly determinigtic, the theory of stochastic computation would
be superfluous, because there could never redly be a stochastic computer, and any apparent
randomness we perceived would be a consequence of deterministic dynamics. But it seems that
the universeis not in fact determinigtic. Quantum physicstells us that chance playsamagor role
in the evolution of the physica world. This leads usto the question: what kind of computer can
smulae any physical system?What kind of computer can follow any precise set of physical
indructions?

It turns out that neither a Turing machine nor a stochastic Turing machine has this property.
This puts the theory of computation in a very uncomfortable Stuation. After dl, the human brain
isaphydcd system, and if computers cannot Smulate any physical system, there is no reason to
amply assume that they can smulate the human brain. Perhaps they can, but thereis no reason
to believeit. Clearly it would be desirable to design a computer which could smulate an
arbitrary physical syssem. Then we would have a much better claim to be talking about
computation in generd.

As mentioned above, D. Deutsch (1985) has taken alarge step toward providing such a
computer. He has described the quantum Turing machine, which according to the laws of
quantum physics can Smulate the behavior of any finite physicad sysem within an arbitrarily
amall degree of error. It can smulate any Turing machine, and any stochastic Turing machine,
with perfect accuracy. Of course, the rules of quantum physics may be revised any day now;
there are a number of pressing problems. But Deutsch'sideais amagjor advance.

There is much more to be said on the topic of quantum computation. But for now, let us
merely observe that the question "what is acomputer?' is hardly resolved. It may never be.
Various abstract models may shed light on differentissues, but they are never fina answers. In
the last analyd's, "precise indructions' is just as € usve a concept as "inteligence” or "mind.”
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1.2 Computational Complexity

Computationa complexity theory, o caled dgorithmic complexity theory, seeks to answer
two different kinds of questions. "How hard isthis problem?’, and "How effectiveisthis
agorithm at solving this problem?'. A number of difficult issues are involved here, and it is not
possible to delve into them deeply without sophisticated mathematics. Here we shal only scraich
the surface.

Questions of computational complexity are only meaningful in the context of agenerd theory
of computation. Otherwise one can only ask "How hard isthis problem for this computer?', or
"How hard is this problem for this particular person?'. What lets us ask "How hard isthis
problem?', without any reference to who is actudly solving the problem, is atheory which tells
usthat problems are basically just as hard for one computer as for another. Here asin so many
other cases, it is theory which tells us what questions to ask.

According to the theory of Turing machines, any sufficiently powerful computer can smulate
any other computer. And thisis not merely atheoreticd illuson. In practice, computers such as
PCs, mainframes and supercomputers are highly flexible. An IBM PC could be programmed to
act just like aMacintosh; in fact, there are software packages which do something very close to
this. Smilarly, aMaclntosh could be programmed to act just like an IBM. Turing proved that
there isaprogram which tells a computer, given appropriate information, how to smulate any
other computer. Therefore, any computer which is powerful enough to run this program can act
asauniversa Turing machine. If it is equipped with enough memory capacity -- e.g. enough disk
drives -- it can impersonate any computer whatsoever.

True, thisuniversd smulation program is very complex. But if a problem is sufficiently
difficult enough, this doesn't matter. Congder the problem of sorting alist of numbersinto
increasing order. Suppose computer A is cagpable of solving this problem very fast. Then
computer B, if it is sufficiently powerful, can solve the problem by smulating computer A. If the
problem is sorting the list { 2,1,3}, then this would be a tremendous effort, because smulating A
isvastly more difficult than sorting the list {2,1,3}. But if the list in question is a billion numbers
long, then it's adifferent story. The point isthat lists of numbers can get aslong asyou like, but
the complexity of smulating another computer remains the same.

Let us make this example more precise. Assume that both A and B have an unlimited supply
of disk drives -- an infinite memory tgpe -- at their disposal. Suppose that the program for
smulating computer A isso dow that it takes computer B 10 time steps to simulate one of
computer A's time steps. Supposeal o that computer A is capable of sorting alist of n numbersin
N2 time steps. That is, it can sort 10 numbersin 100 time steps, 100 numbers in 10000 time steps,
and so on. Assume that computer B is not quite so bright, and it has a sorting program built into
its hardware which takes n3 time stepsto sort alist of n numbers.

Then, if B were given alist of 3 numbers, its hardware could sort it in 33=27 time steps. If it
tried to sort it by Smulating A, it would take 10(32)=90 time steps. Clearly, it should rely on its
built-in hardware. But if B were given alist of 10 numbers, it would take 103=1000 steps to sort
it. If it tried to sort the list by Smulating A, it would take 10(102) time steps -- exactly the same
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amount of time. And if B were given alist of 2000 numbers, it would take 10003=1,000,000,000
sepsto sort it using its hardware, and only 10(10002) =10,000,000 stepsto sort it by smulating
A. Thelonger theligt is, the more useful isthe capacity for smulation, and the less useful isthe
built-in hardware.

The point isthat as the Sze of the problem, n, gets bigger and bigger, the differences between
computers become irrlevant. It is worth being alittle more rigorous abouit this. Take any type of
problem, and assign to each ingtance of it a"gz€' n. For example, if the problem is sorting lists
of numbers, then each inglanceisalist of numbers, and its Szeisits length. Let A(n) denote the
longest amount of time which computer A requires to solve any problem ingtance of szen. Let
B(n) denote the longest amount of time which computer B requires to solve any problem
ingance of Sze n. Assume that the time required to solve an ingtance of the problem increases as
nincreases (just as the time required to sort alist of N numbersincreases as n increases). Then it
follows that the bigger n gets, the less sgnificant is the difference between A(n) and B(n).
Mathematicaly, we say that as n goesto infinity, theratio A(n)/B(n) goesto 1.

All thisfallows from the assumption that any sufficiently powerful computer can Smulae any
other one, by running a certain "universal Turing maching' program of large but fixed Sze.

AVERAGE-CASE ANALYSIS

Note that the quantity A(n) is defined in terms of "worst-case" computation. It is the longest that
computer A takes to solve any problem ingtance of size n. Any computer worth its st can sort
thelist {1,2,3,4,5,6,7,8,9,10} fagter than theligt {5,7,6,4,10,3,8,9,2,1} . But A(n) ignores the easy
cases. Out of dl the possible instances, it only asks: how hard is the hardest?

For some applications, thisis a useful way to look at computation. But not dways. To see
why, consder the following well-known problem. A sdlesman, driving ajegp, must vidt a
number of citiesin the desert. There are no mountains, rivers or other obstructions in the region.
He wants to know what is the shortest route that goes through all the different cities. Thisis
known as the Traveling Sdesman Problem. Each specific ingtance of the problem isparticular
collection of cities or, mathematicaly speaking, aset of pointsin the plane. Thesze of an
indance of the problem, n, is smply the number of citiesinvolved.

How hard is this problem? When the data is presented pictoridly, human beings can solve it
pretty well. However, we must remember that even if Mariais exceptiondly good at solving the
problem, what Maria(n) measures isthe longest it takes Mariato arrive a the correct solution for
any collection of n cities. No human being does well according to this Strict criterion. We do not
aways see the absolute shortest path between the n cities; we often identify aroute which is
close to correct, but not quite there. And we sometimes miss the mark entirely. So we are not
very good at solving the Traveling Sdesman Problem, in the sense that there are instances of the
problem for which we get the answer wrong or take along time to get to the answer. But we are
good at it in the sense that most of the time we get reasonably close to the right answer, pretty
fast. There are two different notions of proficiency involved here.
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The smplest way to solve the Traveling Salesman problem isto ligt al the possible paths
between the cities, then compare al the lengths to see which one isthe shortest. The problemis
that there are just too many paths. For instance, if there are 5 cities, then there are [4x3x2]/2 = 12
paths. If there are 10 cities, then there are [ 9x8x7x6x5x4x3x2]/2 = 181440 paths. If there are,
say, 80 cities, then there are more paths than there are eectrons in the universe. Using this
method, the number of steps required to solve the Traveling Sdesman problem increasses very
fadt asthe Sze of the problem increases. So, given alarge Traveling Salesman problem, it might
be better to gpply erratic human intuition than to use a computer to investigate every possible

path.

Let's consder asmple andogy. Suppose you run a bank, and you have three loan officers
working for you. Officer A is very methodic and meticulous. He investigates every case with the
precison of a master detective, and he never makes amistake. He never loans anyone more than
they can afford. Everyone he approves pays back their loans, and everyone he turns down for a
loan would not have paid it back anyway. The only problem is that he often takes along time to
determine his answer. Officer B, on the other hand, works entirely by intuition. He smply looks
a person over, talks to them about golf or music or the wesather, and then makes his decison on
the spot. He rgjects a some people who deserve loans, and he gives some people more or less
money than they can afford to pay back. He gives loans to afew questionable characters who
have neither the ability nor the inclination to pay the bank back.

Suppose that, although you redly need both, you have been ordered to cut back expenses by
firing one of your loan officers. Which one should go? At first you might think " Officer B, of
course” But what if you have alot ofmoney to lend, and a great many people demanding loans?
Then A might be a poor choice -- &fter al, B will serve alot more customers each month. Even
though there are some cases where A is much better than B, and there are many caseswhere A is
alittle better than B, the time factor may tip the balance in B's favor.

Y ou may bethinking "Well, ared bank executive would find someone who's both fast and
accurate.” In the case of the Traveling Salesman problem, however, no one has yet found an
agorithm which finds the exact shortest path every time much faster than the smple method
given above. And it seems likdy that no such agorithm will ever be discovered. The Traveling
Sdesman problem and hundreds of other important problems have been shown to be "NP-
complete’, which means essentidly that if there is a reasonably fast dgorithm for solving any
one of them, then there is areasonably fast dgorithm for solving dl of them. Many
meatheméticians believe that the question of whether such dgorithms exist is undecidable in the
sense of Godel's Incompleteness Theorem: that there's no way to prove that they do, and ther€'s
no way to prove that they don'.

Now, we have discovered dgorithms which solve the Traveling Sdesman problem fagter than
people, and on the average come up with better answers (Peters, 1985). But there are till some
callections of cities for which they give the wrong answer, or take aridiculoudy long timeto
solve. In the case of the Traveling Sdesman problem, it seemsthat thereis no point in looking
for dgorithms which solve the problem exactly, every time. All the dgorithms which do that are
just too dow. Rather, it seemsto be more intelligent to look for agorithms that solve the
problem pretty wel alot of thetime.
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It turns out that most of the mathematica problemsinvolved in thought and perception are a
lot like the Traveling Sdesman problem. They are "NP-complete’. So when, in later chapters, we
discuss the dgorithms of thought, we shdl virtudly never be discussing dgorithms that solve
problems perfectly. The relevant concept is rather the PAC agorithm -- the dgorithm which is
Probably Approximately Correct.

PARALLELISM

Oneinteresting aspect of the McCullough-Fitts neura network is the way it does many things
a once. At every time step, dl the neurons act. The origind formulation of the Turing machine
was not like that; it only did onething a atime. It moved the tapes, then looked in its memory to
see what to do next. Of course, the McCullough-Ritts network and the origind Turing machine
are fundamentally equivaent; anything one can do, so can the other. But the M cCullough-Fitts
network will, in most cases, get things done fadter.

The computers in popular use today are like the origina Turing machine: they only do one
thing a atime. Thisistrue of everything from PCsto huge mainframe computers -- Cybers,
VAXs and so forth. They are serialcomputers. Some supercomputers and specid- purpose
research computers, however, can work in parallel: they can do up to hundreds of thousands of
things & once. The advantage of pardlelism is obvious. speed. By using apardle computer, one
trades off space for time.

There are many different kinds of parallel computers. Some are so-cdled single-instruction
machines. They can do many things a once, as long as these things are dl the same. For
ingance, atypicd sngle-ingtruction machine could multiply fifty numbers by four dl & the
sametime. But it might not be able to multiply one number by four a the same time as it added
gx to another number.  Multiple-instruction machines are more interesting, but aso more
difficult to build and to program. A multiple-ingruction pardlel computer islike abunch of
serid computers connected to each other. Each one can execute a different program, and
communicate the results of its computation to certain others. In away, it islike asociety of serid
computers. Thinking Machines Corporation, in Cambridge, Massachusetts, has manufactured a
number of powerful multiple-ingtruction parallel computers called Connection Machines. They
are now being used in science and industry -- for, among other things, modeling the behavior of
fluids, andlyzing visud data, and generating computer graphics.

Why isdl thisrdevant? Some may dispute the neurophysiological relevance of the
McCullough-Pitts model and its contemporary descendants. But everyone agreesthat, if the brain
isacomputer, it must be aparalel computer. The brain contains about 100 billion neurons, dl
operating at once, and besdesthat it is continudly swirling with chemica activity. The diversty
of its activity leaveslittle doubt that, if it isindeed a computer, it is a multiple-ingruction pardld
computer. Thisistheintuition behind the recent spurt of research in pardld didtributed
processing.

In Chapter 11 | will take this one step further and argue that the brain should be modeled asa

multiple-ingtruction paralle quantum computer. By then, it will be clear just how different
such acomputer isfrom today's serid computers. We are talking about a computer which does
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billions of different things at once and incorporates a huge amount of chance into its operations.
Aswe shdl seelater, it isacomputer whose state is not completely measurable by any sequence
of physical observations. It is acomputer which, in aphysicaly precise sense, plays a significant
role in the continual creation of the universe. It could be argued that a computer with dl these
properties should not be cdled a"computer”. But, mathematica theories asde, the intuitive
concept of computation has aways been somewhat fuzzy. Aswarned in the Introduction, the
limitations of present-day computers should not be taken as fundamenta restrictions on the
nature of computation.

1.3 Network, Program or Network of Programs?

Throughout history, philosophers, scientists and inventors have arguedprofusaly both for and
againd the possihility of thinking machines. Many have aso made suggestions as to what sort of
generd grategy one might use to actudly build such amachine. Only during the last half-
century, however, hasit become technicaly possible to serioudy attempt the construction of
thinking machines. During this period, there have emerged two sharply divergent gpproachesto
the problem of artificid intelligence, which may be roughly described as the "neura network
gpproach” and the "programming gpproach’”. Cognitive science has played an important rolein
the development of the latter, for obvious reasons. cognitive science analyzes mental processes
in terms of smple procedures, and smple procedures are easily programmeable.

Wheat | roughly labd the "neura network approach” involves, more precisgly, the conception,
congruction and study of eectric circuitsimitating certain agpects of the dectrica structure of
the brain, and the attempt to teach these circuits to display behavior smilar to that of red brains.
In the late 1940s and the 1950s, no other approach to Al was so actively pursued. Throughout the
1960s, it became increasingly apparent that the practica success of the neura network approach
was by no meansimminent -- fairly large neura networks were congtructed, and though the
results were sometimes interesting, nothing even vagudy resembling amind evolved. The rapid
advent of the generd-purpose digital computer, among other factors, led researchersin other
directions. Over the past decade, however, there has been a tremendous resurgence of interest in
neural networks.

The fundamentd tenet of the neural network approach is that certain large, densely
interconnected networks of extremdy simple but highly nonlinear eements can be trainedto
demonstrate many or al of the various activities commonly referred to as intelligence. The
ingpiration for this philosophy was a trend in neuroscience toward the moddling of the brain asa
network of neurons. The dynamics of the individua neuron was understood by Hodgkin and
Huxley in 1955, dthough recent investigations have led to certain modifications of their andyss.
Unable to mimic the incredible complexity of chemica interaction which underlies and subtly
dtersthe operation of a biologica network of neurons, and possessing few ideas asto what
restrictions might be placed on the elements or structure of a network in order to encourage it to
evolve intelligence, early researchers smply constructed modd networks of Smulated neurons
and tried to teach them.

Each of the neurons of such anetwork is connected to asmal set of other neuronsin such away
that it can input charge to them. The charge which it sends to them at agiven timeisafunction
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of the amount of charge which it contains aswell as, possbly, other factors. Usudly the function
involved is a threshold function or a continuous approximetion thereof. Some researchers
actudly built networks of smulated neurons; others merely smulated entire networks on
genera- purpose computers, sometimes including nontrivia physica aspects of the neurd
network (such as imperfect conductance of connections, and noise).

The first problem faced by neura network researchers was the fact that asimple network of
neurons contains no obvious learning device. Some thought that the ability to learn would
gpontaneoudy evolve; most, however, implemented within their networks some rule for adapting
the connections between neurons. The classica example is the Hebb rule (Hebb, 1949): when a
connection is used, its resstance is decreased (i.e. more of the charge which isissued into it
actualy comes out the other end; lessislogt in trangt). This may be interpreted in many different
ways, but it is clearly intended to serve as a primitive form of anaogy; it says "this connection
has been used before, so let us makeit easier to useit again.” Whether the brain works this way
we are not yet certain. Various modifications to the Hebb rule have been proposed, mostly by
researchers thinking of practical agorithmic development rather than biology (Rumdhart and
McClelland, 1986)

Neither the failures nor the successes of this approach have been decisve. Various networks
have been successfully trained to recognize Smple patterns in character sequences or in visud
data, to gpproximeate the solutions of certain mathematical problems, and to execute a number of
important practical engineering tasks. On the theoretica side, Stephen Grossberg (1987) and
others have proven generd theorems about the behavior of neural networks operating under a
wide class of dynamics. And in various particular cases (Hopfield, 1985), it has been proved in
what sense certain neurd networks will converge to gpproximate solutions to certain problems.
But it must nonetheless be said that there exists no empirical or theoretical reason to believe that
neura networks similar to those hitherto designed or studied could ever be trained to possess
inteligence. Thereis no doubt that researchers into the neura network approach have
demongtrated that disordered circuits can be trained to demondirate various types of adaptive
behavior. However, it isalong way from adaptation to true intelligence.

It is clear that the "neurd networks' hitherto produced involve such drastic oversmplifications
of brain gructure that they must be considered parald processors of afundamentaly different
nature. In fact, most contemporary practitioners of the neura network approach are quite aware
of this and continue their labors regardless. Such research isimportant both practicaly and
theoreticaly. But it is connected only indirectly with the study of the brain or the design of
thinking machines. For this reason many neurd network researchers prefer the term "pardld
digtributed processing” to "neura networks."

By the 1970s, the neura network gpproach had been amost entirely supplanted by what | shdl
cdl the programming gpproach: the conception, study and implementation on generd- purpose
computers of various "atificid intelligence’ dgorithms. Most such dgorithms consst of clever
tricks for approximating the solutions of certain mathematica problems (usualy optimization
problems) thought to reflect important agpects of human menta process. A few approach closer
to the red world by applying Smilar tricks to the execution of Smple tasks in computer-
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smulated or carefully controlled environments called "microworlds'. For example, afamous
program treets theproblem of piling polyhedrd blocks on aflat floor.

In the early days of the programming gpproach, Al programmers were routingly predicting
that atruly intelligent computer program would be avalladle in ten years (Dreyfus, 1978). Their
optimism is quite understandable: after dl, it took computers only a couple of decades to
progress from arithmetic to expert chess, competent vision processing, and rudimentary theorem
proving. By the late 1980s, the programming approach had succeeded in creeting adgorithms for
the practicd solution of many difficult and/or important problems -- for instance, medical
diagnosis and chess. However, no one had yet written an Al program applicable to two widely
divergent situations, let done to the entire range of Stuations to which human intelligenceis
gpplicable. Enthusiasm for Al programming declined.

Nearly dl contemporary researchers have accepted this and are aware that there is no reason to
believe true inteligence will ever be programmed by methods remotdy resembling those
currently popular. The modern practice of "artificid inteligence’, haslittle to do with the design
or congruction of truly intelligent artifices -- the increasingly popular term "expert systems' is
far more descriptive, since the programs being created are never good at more than one thing.
Feeling thet the programming gpproach is reaching an ill-defined dead-end, many researchers
have begun to look for something new. Some have seized on pardld processing as a promising
possibility; partly as aresult of this, the neurd network approach has been rediscovered and
explored far more thoroughly than it was in the early days. Some of those who found "neura
networks' absurd are now entranced with "paralld digtributed processng”, which is essentidly
the same thing.

The programming gpproach is vulnerable to a critique which runs pardld to the standard
critique of the neurd network gpproach, on the level of mind instead of brain. The neurd
network approach grew out of amodel of the brain as a chaoticaly connected network of
neurons; the programming approach, on the other hand, grew out of amodd of the mind as an
ingenious agorithm. One oversmplifies the brain by portraying it as unredigticaly unstructured,
asimplausibly dependent on sdf-organization and complexity, with little or no intringc order.
The other oversmplifies the mind by portraying it as unredigticaly orderly, asimplausbly
dependent upon logical reasoning, with little or no chaotic, deeply trid-and-error-based self-
organization.

Asyou have probably guessed, | suspect that the brain is more than arandomly connected
network of neurons, and that the mind is more than an assemblage of clever dgorithm. | suggest
that both the brain and the mind are networ ks of programs. Networks of automata.

This attitude is not exactly a negation of the neural network or programming approaches to Al.
Certainly the primary aspect of structure of the brain is the neurd network; and certainly the
mind is proceeding according to some set of rules, some agorithm. But these assartions are
insufficiently precise; they also describe many other structures besides minds and the organs
which give rise to them. To ded with either the brain or the mind, additiona hypotheses
arerequired. And | suspect that neither the neura network nor the programming approach is up to
the task of formulating the gppropriate hypotheses.
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2

Optimization

2.0 Thought as Optimization

Mentd process involves alarge variety of computational problems. It isnot entirely
implausible that the mind dedl's with each of them in a unique, context-pecific way. But, unlike
Minsky and many cognitive scientigts, | do not believe thisto be the case. Certainly, the mind
contains a huge number of specid- purpose procedures. But nearly dl the computational
problems associated with menta process can be formulated as optimization problems. And |
propose that, by and large, thereis one general methodology according to which these
optimization problems are solved.

Optimization is Smply the process of finding that entity which a certain criterion judges to be
"best". Mathematicdly, a"criterion” is Smply afunction which maps a st of entitiesinto a st
of "vaues' which hasthe property thet it is possble to say when one vaue is greeter than
another. So the word "optimization” encompasses a very wide range of intellectua and practical
problems.

For ingance, virtualy dl the laws of physics have been expressed as optimization problems,
often with dramatic consequences. Economics, politics, and law dl revolve around finding the
"best" solution to various problems. Cognitive science and many forms of therapeutic
psychology depend on finding the modd of a person'sinterna state which best explains their
behavior. Everyday socid activity is based on maximizing the hgppiness and productivity of
onesdf and others. Hearing, seeing, walking, and virtualy dl other aspects of sensation and
motor control may be viewed as optimization problems. The Traveling Sdesman problemisan
optimization problem -- it involves finding the shor test path through n cities. And, findly, the
methodologica principle known as Occam's razor suggests that the best explanation of a
phenomenon isthe smplest one that fits dl the facts. In this sense, dl inquiry may be an
optimization problem, the criterion being smplicity.

Some of these optimization problems have been formulated mathematicaly --eg. in physics
and economics. For others, such asthose of politics and psychology, no useful formaization has
yet been found. Nonmathematical optimization problems are usudly solved by intuition, or by
the gpplication of extremely smple, rough traditional methods. And, despite a tremendous body
of sophigticated theory, mathematical optimization problems are often solved inasmilar
manner.

Although there are dozens and dozens of mathematica optimization techniques, virtudly none

of these are applicable beyond a very narrow range of problems. Mogt of them -- steepest
descent, conjugate gradient, dynamic programming, linear programming, etc. etc. (Dixon and
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Szego, 1978; Torn et a, 1990) -- rely on specia properties of particular types of problems. It
seems that most optimization problems are, like the Traveling Sdesman problem, very hard to
solve exactly. The best one can hope for isa PAC solutions. And, in the "classicd” literature on
mathematical optimization, there are essentidly only two reasonably genera approachesto
finding PAC solutions: the Monte Carlo method, and the Multistart method.

After discussing these methods, and their shortcomings, | will introduce the multilevel
philosophy of optimization, which incorporates both the Monte Carlo and the Multistart methods
inarigid yet generdly applicable framework which gppliesto virtudly any optimization
problem. | will propose that this philosophy of optimization is essentia to mentality, not leest
because of its essentia role in the perceptual and motor hierarchies, to be discussed below.

2.1 Monte Carlo And Multistart

The Monte Carlo philosophy says: If you want to find out what's best, try out alot of different
things a random and see which one of these is best. If you try enough different things, the best
you find will be dmogt certainly be a decent guess a the best overdl. This isacommon
gpproach to both mathematica and intuitive optimization problems. Its advantages are smplicity
and universa applicability. Its dissdvantageis, it doesn't work very well. It isvery dow. This
can be proved mathematically under very broad conditions, and it is also gpparent from practical
experience. In generd, proceeding by sdecting things a random, one hasto try an awful lot of
things before one finds something good.

In contrast to the Monte Carlo philosophy, the Multistart philosophy depends on local sear ch.
It begins with arandom guess xo, and then looks at dl the possibilitieswhich are very close to
xo. The best from among these possibilitiesis called xi.. Then it looks &t dl the possihilities
which are very closeto xi1, selects the best, and callsit x. It continues in this manner --
generating xs, X4, and so on -- until it arrives a a guess x» which seems to be better than anything
esevery closetoit. Thisx iscaled alocal optimum -- it is not necessarily the best solution to
the optimization problem, but it is better than anything in itsimmediate vicinity.

Locda search proceeds by looking for a new answer in the immediate locdity surrounding the
best answer one has found so far. The god of locd search isto find aloca optimum. But, as
Figure 1 illugtrates, alocd optimum is not aways agood answer. It could be that, dthough there
is nothing better than x» in theimmediae vicinity of x», there is something much better than x
somewhere else.

In mathematica optimization, it is usudly easy to specify what "very closg" means. In other
domains things may be blurrier. But that doesn't mean the same ideas aren't gpplicable. For
ingance, suppose apalitician is grappling with the problem of reducing carbon monoxide
emissonsto asafe level. Maybe the best idea she's found so far is " Pass alaw requiring that all
cars made after 1995 emit so little carbon monoxide that the total level of emissonsis safe'’.
Then two ideas very near thisone are: "Pass alaw giving tax breaks to corporations which make
cars emitting safe leves of carbon monoxide”, or "'Pass alaw requiring that dl cars made after
1992 emit =0 little carbon monoxide that the total level of emissonsis safe” And two ideas
which are not very near xo are: "Tax automakers more and give the money to public
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trangportation” and " Give big tax bresks to cities which outlaw driving in their downtown arees.”
If she decides that none of the ideas near "Pass alaw requiring that all cars made after 1995 emit
0 little carbon monoxide that the totd level of emissonsis safe” isas dtractive asit is, then this
ideaisalocd optimum (from her point of view). Even if she fdt that taxing automakers more
and giving the money to public trangportation were a better solution, this would have no effect
on the fact that giving tax breaks to corporations that make safe cars was alocal optimum. A
locd optimum is only better than those things which are very smilar to it.

The Multigtart philosophy says: Do abunch of loca searches, from alot of different sarting
points, and take the best answer you get as your guess a the overall best.

Sometimes only one starting point is needed. For many of the optimization problems that arise
in physics, one can pick any starting point whatsoever and do alocal search from that point, and
oneis guaranteed to arrive at the absolute best answer. Mathematicaly, a problem of thissort is
cdled convex. Unfortunately, most of the optimization problems that occur in politics, sensation,
motor control, biology, economics and many other fields are nonconvex. When dedling with a
convex optimization problem, the only thing you have to worry about is how well you go about
picking the best from among those entities close to your best guess so far. Each year dozens of
papers are written on thistopic. But convexity isavery specid property. In generd, local search
will not be effective unlessit is gpplied according to the Multigtart philosophy.

The Multigiart philosophy works well for problems that don't have too many local optima. For
ingance, it would take a very long time to solve the problem in Figure 1 according to the
Multigtart philosophy. In this case the Monte Carlo approach would be preferable; the loca
searches are essentidly awaste of time.

2.2 Smulated Annealing

In recent years a new gpproach to globa optimization has become popular, one which
combines aspects of Monte Carlo search and loca search. This method, caled smulated
anneding, isinspired by the behavior of physica sysems. Statistical mechanicsindicates that
the state of many systems will tend to fluctuate in arandom but directed manner.

To understand this, we must introduce the "state space”’ of a system, amathematica set
containing al possible states of the system. In state gpace, two states A and B are understood to
be neighborsif thereisa"smple, immediate" trangtion between the two. Let E(A) denote the
energy of the sae A.

In the particular case that the system involved is computationa in nature, each of its possible
states may be described by afinite sequence of zeros and ones. Then two states are neighbors if
their corresponding sequences differ in exactly one place. This Stuaion arisesin "spin glass
theory”, arapidly growing field which connects optimization theory and physics

In the case of gpin glasses, physics dictatesthat, if A and B are neighboring states, the
probability of the state of the system changing from A to B is determined by 1) the quantity E(A)
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- E(B), and 2) the temperature, T, of the system. The schematic formulafor the probability of
going from state A to Sate B is

P(B%A) = 1/[1+exp([E(B)-E(A)]/KT)],
where k is Boltzmann's constant (Mezard, 1987).

Temperature corresponds to randomness. If T=0, the system has probability one of going to a
date of lower energy, and probahility zero of going to a state of higher energy. So when T=0, the
system will automaticaly settle into aloca minimum of the energy function. The higher T is, the
more likely it isthat the law of energy minimization will be violated; thet there will be a

trangtion to agtate of higher energy. The analogy with optimization is obvious. At T=0, we have
loca search, and a T=infinity we have P(B%A)=1/2, S0 we have a random search: from any
date, the chance of going to ether of the two neighborsis equd. At T=infinity, the system will
continue to fluctuate a random forever, never expressing a preference for any particular Sate or
set of states. This processis cdled thermal annealing.

In optimization problems, oneis not concerned with energy but rather with some genera
function f. Let us assume that this function assgns a number to eech finite string of zeros and
ones. Then, in order to minimize f, one may mimic the process of therma anneding. Starting
from arandom initid sequence, one may either remain there or move to one of the two
neighbors, and the probakility of going to a given neighbor may be determined by aformulalike
that involved in therma annedling.

In practice, the spin-glass formula given above is modified dightly. Starting from arandom
initial guess x, one repeets the following process:

1. Randomly modify the current guess x to obtain anew guessy,
2. If f(y)<f(x) then let x=y and return to Step 1,
3. If f(y)>f(x) then let x=y with probability exp([f(y)-f(X)]/T), and return to Step 1

The tricky part isthe way the "temperature”’ T isvaried as this processis repeated. One Sarts
with a high temperature, and then gradudly decreasesit. Theideaisthat in the beginning oneis
locating the generd region of the globa minimum, so one does not want to be stuck in shalow
loca minima; but toward the end one is presumably dready near the locd minimum, so one
amply wantsto find it.

Philosophicdly, thisis somewhat smilar to the multilevel approach to be described in the
following section. Both involve searches on various "levels' -- but here they are levels of risk,
whereas with the multilevel method they are levels of "magnification”. Neither gpproach is
perfect; both tend to be too dow in certain cases. Probably the future will yield even more
effective dgorithms. But it is not implausible that both smulated anneding and multilevel
optimization play sSgnificant rolesin the function of the mind.
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2.3 Multilevel Optimization

The basic principles of multilevel optimization were enounced in my Ph.D. thesis (Goertzd,
1989). There | gave experimenta and theoretica results regarding the performance of a number
of specific agorithms operating according to the multilevel philosophy. Shortly after completing
this research, however, | was surprised to find that the basic idea of the multileve philosophy
had been proposed by the sociologist Etzione (1968), in his Adaptive Society, as amethod for
optimizing the socid sructure. And afew monthslater | became aware of the strong smilarity
between multilevel optimization and the "discrete multigrid” method of Achi Brandt (1984) (who
introduced the term "multilevel” into numericd andyss). Brandt's ideas were introduced in the
context of spin-glass problems like those described above. These parallels indicate how
extremely smple and naturd the ideaiis.

The firgt key concept is that the search for an optimum isto be conducted on afinite number
of "levels’, each one determined by a certain characterigtic distance. If the levels are denoted
1,2,....L, the corresponding distances will be denoted h,...,h., and we shall adopt the convention
that hi<hi+1. The multilevel philosophy assumes the existence of some method of "search” which
finds an optimum vaue "about apoint x on levd i." There are many ways of executing such
search. For instance, one may execute Monte Carlo search over the sphere of radius h about x.
Or one may execute Monte Carlo search over the surface of the sphere of radius h about x. Such
choices condtitute specific multilevel methods operating within the framework of the multileve
philosophy. The multilevel philosophy has to do not with the nature of the searches but with the
relation between searches executed on various levels,

A method operating within the multilevel philosophy may or may not incorporate a''zero
level," alocd optimization method. Firgt let us consder thecase L=1, with azero leve. In this
case the concept is asfallows. Given an initid guess xo, firg execute the loca optimization
method is executed a this point. WWhen the loca optimization routine stops (having found alocd
extremum), stops proceeding fast enough (according to some preassigned threshold), or finishes
apreassigned number of steps at some point wo, then search on leve 1 is executed about wo,
yielding anew point 2. Loca optimization is then executed about 2, until it is hdted by one of
the three criteria, yielding anew point yo. Next, f(yo) is compared with f(xo). If f(yo) is better than
f(X0), then the entire procedure is begun from yo; i.e. Xo is set equd to yo and the dgorithm is
restarted. But if f(xo) is better, the program is terminated; xo isthe "answer.” Theideaisto avoid
getting stuck in ashdlow locd optimum, or getting stuck crawling up an extremely gentle dope,
by "jumping" away from the optimum by the nonloca search on leve 1.

If no zero level were implemented, and the local optimization routine in the above description
were replaced with the identity mapping, one would gtill have a viable optimization method,
which we shdl cdl the one-level method. If hi isvery amdl, then the one-level method isa
generd-purpose locd optimization method. In fact, in the case of a Boolean function one may
take =1 (Hamming distance) and take the level- 1 search to be an exact search on the surface of
the sphere of radius 1 (there is no interior but the center). One then has the standard discrete
steepest- descent method. And, in the continuous case, if one takes the level- 1 search method to
be a Monte Carlo search on the surface of the sphere of radius hy, then one hasasmple,
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unorigina approach to steepest- descent optimization which is probably as good as anything else
for locd optimization of functions with extremdy "rugged" graphs.

Next, consider the case L=i, i>1. Here, given an initid guess xo, we firg execute the agorithm
for L=i-1 about this point. When the L=i-1 routine stops (having found an "answer"), sops
proceeding fast enough (according to some preassigned threshold), or finishes a preassigned
number of steps a some point wo, then search on leve i is executed about wo, yidding anew
point 2. The L=i-1 routine is then executed about z, until it is hated by one of the three criteria,
yielding anew point yo. Next, f(yo) is compared with f(xo). If f(yo) is better than f(xo), then the
entire L=i procedure is begun from yo; i.e. Xo is set equa to yo and the dgorithm is restarted. But
if f(x0) is better, the program is terminated; xo isthe "answer.”

For L=2, this procedure, if it has a zero leve, first seeks alocal optimum, then seeks to jump
out of it by searching on leve 1, and then seeksto jump out of the result of this jumping-out by
searching on leve 2. L=2 without a zero leve isthe same as L=1 with the one-level method as a
zero-leve.

Similarly, the L=i procedure seeksto jump out of the result of jumping out of the result of
jumping out of ... the result of jumping out of the result of the lowest leve.

The following ingtance may give an heuristic conception of the crux of the multilevel
philosophy. For smplicity, we assume no zero level, and we assume thefirst of the three criteria
for sopping search: search on leve i is stoppedonly when an "answer” on leve i-1 isfound. The
same example may just as easily be gpplied to the other cases.

A SIMPLE EXAMPLE

Consder afunction which maps anumerica vaue to each house in the world, and suppose a
person istrying to find the house with the highest number. If the digtribution of numbersis
totaly random, it doesn't matter what order he checks the various housesin. But what if thereis
some intrindc, perhaps subtle, structure to it? What does the multilevel philosophy tell him to
do?

Starting from arandomly selected house, he should first check al houses on that block and see
which one has the highest number. Then he should check the neighboring block in the direction
of thisoptima house. If no house on that block is better, he should call the best house he's found
so far his block-level optimum. But if some house on that block is better, then he should proceed
to check the neighboring block in the direction of this new optima house. And so on, until he
finds a block-leve optimum.

Once he finds a block-leve optimum, he should then take arough survey of the town in which
the block gits, and make a guess as to which areas will be best (say by the Monte Carlo method).
He should pick ablock in one of the areas judged best and execute block-level search, as
described above, from this block, and so on until he reaches a new block-levd optimum. Then he
should compare the two block-level optimaand cal the best of them his tentative town-leve
optimum.
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Then he should proceed to the town in the direction of this optimum and there execute town-
level optimization as described above. He should compare his two tentative town-level optima
and, if the old one is better, cdl it histown-leve optimum. But if the new one is better, then he
should proceed to the neighboring town in its direction and locate a new tentative town-leve
optimum. And so on, until he obtains atown-leve optimum.

Then he should make a rough survey of the county in which thistown dts, and make a guess
asto which areas will be best (say by the Monte Carlo method). He should pick atown in one of
the areas judged best and execute town-level search, as described above, from this town, and so
on until he reaches a new town-leve optimum. Then he should compare the two town-leve
optimaand cal the best of them his tentative county-leve optimum.

Then he should proceed to the county in the direction of this optimum and there execute
county-level optimization as described above. He should compare his two tentative county-level
optima and, if the old one is better, cdl it his county-leve optimum. But if the new oneis better,
then he should proceed to the neighboring county in its direction and locate a new tentative
county-level optimum. And so on, until he obtains a county-level optimum. Applying the same
logic, he could obtain state-wide, nation-wide and globa optima...

3

Quantifying Structure

3.0 Algorithmic Complexity

What does it mean to say that one thing is more complex than another? Like most words,
"complexity" has many meanings. In Chapter 1 we briefly discussed the "complexity” of
computation -- of problems and agorithms. In this chapter we will consider severd gpproaches
to quantifying the complexity of individua entities, beginning with the smple Kolmogorov-
Chaitin- Solomonoff definition.

Throughout this chapter, when | spesk of computers | will mean ordinary Turing machines,
not stochastic or quantum computers. As yet, no one realy knows how to ded with the
complexity of objectsin the context of stochastic or quantum computation, not in complete
generdity. Since a quantum computer can compute only those functions that a Turing machine
can dso compute, thislimitation is not fatd.

It turns out that the easiest way to approach the complexity of objectsis via the complexity of
sequences of numbers. In particular, | will concentrate on binary sequences. sequences of zeros
and ones. Asis common in mathematics, the generd issue can be resolved by considering what
at first sght appearsto be avery specia case.
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The standard approach to the complexity of binary sequences was invented independently by
A.N. Kolmogorov, Gregory Chaitin, and Solomonoff (Chaitin, 1987), so we shal call it the KCS
complexity. In my opinion, what the KCS definition measures is not very well described by the
word "complexity." Lack of structure would be a better term.

Given any computer A, the KCS complexity of a sequence x is defined to be the length of the
shortest self-ddimiting program on A which computes x. The redriction to "sdf-ddimiting’
programsis necessary for technica purposes and will not worry us much here; roughly spesking,
asdf-ddimiting program is one which contains a segment telling the computer which runsit
how long it is. In the following, | may occasondly refer to "shortest programs' instead of
"shortest sdlf-deimiting programs'; but it should be implicitly understood thatal programs
discussed are sef-ddimiting.

For instance, the KCS complexity of the sequence 10011010010010010 on an IBM PC isthe
length of the shortest program which, when loaded into the PC, causesiit to output
10011010010010010 on the screen. In what follows; 1 will occasiondly refer to the KCS
complexity of a sequence x as KCS(Xx).

There is some vagueness here, as to what "length” means. For one thing, there are large
differences between the various programming languages on the market today. There are a
number of "high-levd" languages, which dlow oneto type in programs vagudly resembling
mathematical formulae: Fortran, Pascal, Cobol, Snobol, Ada, Prolog, C, Basic, Lisp, Forth, and
so on. A program which is short in Pascal may be long in Cobol; and a program which is short in
Basic may belong in Pascd. And then there is "assembly language”’, which refers directly to the
hardware of the computer. A program in assembly language is usudly very long. However,
before a computer can use a program written in ahigh-level language, it must trandate it into
assembly language. (The program which does the trandation is cdled the "compiler"). When
figuring the length of a program written in Fortran, should we use the number of charactersin the
program as origindly typed in, or the number of charactersin the assembly-language trandation
of the program?

From the point of view of the mathematica theory of complexity, none of these issues matter.
We can amply assume we are dedling with auniversa Turing machine. Trandating from a
foreign language is essantialy the same as Smulating another computer. So if asequenceisiong
enough, its KCS complexity is essentialy language-independent and computer-independent. For
example, say you have a sequence x congsting of a billion Os and 1s. Suppose it can be
computed by a program of length 1,000,000 on an IBM PC. Suppose aVAX computer has been
programmed to Smulate a PC, and suppose this smulation program has length 200,000. Then
the shortest program for computing x on the VAX cannot be any longer than 1,200,000. Because,
if dl dsefals, one can compute x on the VAX by smulating a PC. These numbers are highly
unredligtic, but the point isthat as the sequences get longer and longer, the Sze of the smulation
program remains the same. When the sequences are atrillion digits long, the 200,000 length of
the smulation program will mean next to nothing.

Some of the newer programming languages are actudly "universal programming languages'
inavery practica sense: any contemporary programming language can be compactly written in
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them. For instance, one could write a C program which smulated Pasca or Lisp or Fortran, or a
Lisp program that smulated Pasca or Fortran or C. (In fact, what is now known as Lisp was
origindly written in asmpler form of Ligp, and what is now known as C was origindly written
inasmpler form of C.) Let's say a certain sequence x could be computed by a very short Fortran
program. Then one way to compute the sequence on a machine with a built-in Ligp compiler
would be to write a Lisp program to smulate Fortran. If there were no smpler way to compute
the sequence in Lisp, this might yield the shortest program forcomputing the sequence on that
particular machine.

Again: the beauty of theoretical computer scienceisthat, aslong as we are talking about long
sequences, we don't have to worry about the properties of specific machines or languages. Thisis
what differentiates theoretical computer science from practica computer science. Naturdly, the
latter is more visble in the everyday world. However, both the theory and the practice of
computer science are essentia to the study of mind.

What is the KCS complexity of the sequence 0101010101010101
010101010101010101010101? It should be very small on any computer, because one can write a
program saying "Print ‘01" twenty times'. And what is the complexity of the sequence conssting
of 01 repeated 1,000,000,000,000 times? This should till be very smdl on any computer,
because one can write a program saying "Print ‘01" 1,000,000,000,000 times."

Note that this program is not quite as short as "Print 01 20 times'. Our program for repesting
'01' 1,000,000,000,000 timesis 31 characters long, but our program for repeating ‘01’ 20 timesis
only 16 characterslong. The differenceis, obvioudy, that it takes more space to write
'1,000,000,000,000 than it does to write '20". As n increases, the KCS complexity of repeating
something over and over again n times increases. But it does not incresse very fast. After dl,
1,000,000,000,000 is 50,000,000,000 times as large as 20. But, according to the programs written
above, the KCS complexity of repeating '01' 1,000,000,000,000 timesis only 31/16 timesthe
KCS complexity of repesting '01' 20 times.

The ratio of program szes, here 31/16, may vary from computer to computer, from
programming language to programming language. It would be different if this book were written
in Spanish rather than English, because the equivaent of the word "print” would not have exactly
fivelettersinit. But it is difficult to imagine a computer on which it would gpproach
50,000,000,000. Mathematically, we may say that as n gets bigger and bigger, the size of the
shortest program for repesting something n times gets closer and closer to log(n). Thisislittle
more than common sense, because the number of digitsin the decima expansion of alarge
number n isdways very closeto log(n).

What about the KCS complexity of the sequence 010011000111
00001111000001111100000011111100000001111111? This depends on

whether it is shorter to say

Print 0100110001110000111100000111110000001111110000000 1111111
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or to say

Do thefollowing for k=1, then k=2, and so on up to k=7:
Print k 'O'sand thenk '1's’

In this case the former is a bit shorter. But consider the sequence
01001100011100001111000001111100000011111100000001111111

00000000111111110000000001111111110000000000111111111100000000000

1111111111100000000000011111111111100000000000001111111111111

00000000000000111111111111117? Here there is no doubt that the latter sort of program is
shorter.

Actudly determining the KCS complexity of a sequenceis adifficult matter. There are
sequences which look completely random and can nonetheless be computed by short programs.
For ingtance, if one printed the firgt ten thousand digits of the binary expansion of pi, virtudly no
human being would recognize any gructureinit.

On the other hand, what is the complexity of a sequence x which is completely random in the
sense of having no structure whatsoever? In this case the best way to compute x isto write a
program saying "Print X". This program is about aslong as x is. If x has n digits, this program
has length n+c, for some small congtant c. In the case of the program as written above, c=5.
According to the KCS definition, a completely structureless sequence such as
10010100101001000011101001101001010010110001100101010001110110101
010001001010010100100101001010110101

is the most complex kind of sequence, with acomplexity gpproximately equa to n. On the other
hand, a sequence with avery smple structure, such as1111111111111111111111, isthe least
complex kind of sequence, with a complexity approximately equa to log(n). Sequences with
more intricate sructures fal somewhere inbetween.

It can be shown that no program can compute the KCS complexity of an arbitrary sequence.
For any program P, there is some X the KCS complexity of which P cannot compute.

3.1 Randomness

It isnaturd to define arandom sequence as one which has no satistica regularities (von
Mises, 1957). For instance, one might propose that in a random binary sequence 1 should occur
exactly as often as 0. Also, one might require that the four doublets 00, 01, 10 and 11 should
occur equally often. And perhaps the eight triplets 000, 001, 010, 011, 100, 101, 110, and 111
should occur with equa frequency. And so on. It would clearly be desirable to define arandom
seguence as one in which al subsegquences of length n occur with equa frequency. Let us cal
thisthe natural definition.
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Clearly, this definition does not gpply to finite sequences. Each sequence of length n contains
exactly one subsequence of length n (itsdlf), so it certainly does not contain al sequences of
length n equally often. According to this definition only an infinitely long sequence can be
random.

Early in this century it was discovered that there isabasic flaw in this approach. The
retrictions imposed by the natura definition are so stringent that no sequence, finite or infinite,
can possible satisfy them. However, they are not beyond repair. A normal sequence is defined as
one in which, as you go further and further out in the sequence, the frequencies of dl the
subsequences of length n get closer and closer to being equal. For instance, if one tooksamples of
anorma sequence near the beginning, one might well find alot more 00s than 01s, 10s or 11s.
But eventually, if one took samples far enough out, one would have to find 00s, 01s, 10s and 11s
equdly often.

Intuitively spesking, if you tossed a coin and recorded O whenever tails came up, 1 whenever
heads came up, you would expect the list of O'sand 1'sto be anorma sequence. Essentidly, a
norma sequence is a sequence in which, as you go further and further out, each digit has less and
lessto do with the others. Just as, in a series of coin tosses, each toss has essentidly nothing to
do with the others.

That is one gpproach to randomness. There is another approach, involving the KCS definition
of complexity, which dso involvesinfinite sequences. Whet is remarkable is that the two
different approaches turn out to be closely related.

RANDOMNESSAND COMPLEXITY

Consder an infinitely long binary sequence x. Let x[n] denote the first n terms of x. For
instance, if x = 01001101010001001010..., then x[7] = 0100110. The idea behind the KCS
gpproach to randomness is that the complexity of the infinite sequence x can be defined in terms
of the complexities of the finite sequences x[n]. Thefirs Sep isto ask: as n gets bigger and
bigger, what happens to the KCS complexity of x[n]? If x = 0000000..., then the question has an
easy answer. The sequence x[n] consists of n zeros, and KCS(x[Nn]) complexity is about log(n).
And, intuitively speeking, if x istotaly structurdess, then x[n] has a KCS complexity of about n.
These congderations lead up to the crucid indght, due to Kolmogorov and Per Martin-Lof. Look
at what happens to the ratio KCS(x[n])/n as n gets bigger and bigger.

If, as n gets bigger and bigger, KCS(x[n])/n gets closer and closer to 1, then it follows that for
large n, KCS(x[n]) is close to n. And this meansthat, for large n, X[n] essentidly hasno
structure. On the other hand, if KCS(x[n])/n gets closer and closer to zero as n increases, this
means that for large n there isindeed some structure in x[n]. It meansthat, for large n, thereis
indeed a better way of computing x[n] than just saying "Print x[n]™".

What if x looks like this: 01010000010000010001000100 00000100010001...? Here every
other digit isazero: thefirg, the third, the fifth, and so on. But the even- numbered digitsfollow
no apparent pattern. Whet if x continued thisway forever? Then x[n] could be computed by a
program of the form "Print this sequence, putting a'0" between every two terms: '110010...",
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where '110010..." is afinite sequence consisting of the odd-numbered terms of x[n]. How long is
this program? Well, the sequence consisting of the odd-numbered terms of x[n] is about /2
digitslong. So here KCS(x[n]) is about n/2. Thus KCS(x[n])/n is about 1/2.

Ignoring a number of technica issues, we may define arandom infinite sequence x asa
sequence for which, as n gets bigger and bigger, KCS(x[n])/n does not approach zero, but rather
gpproaches some other number. A randominfinite sequence x is one for which thereisafairly
easy way of computing X[n], when n getslarge. It can be proved that almost all infinitdy long
seguences are random in this sense -- dgorithmically random.

One way to understand this definition isas follows: A random sequence is an infinite sequence
which cannot be summed up in any formula of finite length. For instance, 00000000... can be
summed up in the formula"Repeet ‘0" forever”. And 010010001000010000010000001.... can be
summed up in the formula " Repeat '0' k times and then print '1', for k=1,2,3/4,...." But arandom
sequence x cannot be summed up in any formula, because if it could then that formulawould
provide away to compute x[n].

Clearly, every sequence which is random in this sense is not normal. Think about the sequence
given three paragraphs up, whose odd-numbered digits are al zeros but whose even-numbered
digits have no structure to them. No matter how far out you look, O's and 1's are not going to
occur equaly often in this sequence. There will dways be more 0's. The best you can say about
this sequence isthat it has a subsequence -- the sequence of its everr numbered digits -- which
looks to be normdl.

PROBLEMSWITH RANDOMNESS

The theories of randomness sketched above are not very useful in practice, for obvious
reasons. It only dedls with infinitely long sequences. In redlity, we are dways faced with finite
collections of data

This redtriction to infinite sequences leads to a couple of interesting conceptud paradoxes.
Firgt of al, the very proof that random sequences exist is somewhat troublesome. We have
proved that dmost every infinite sequence is random, but can we prove that any one particular
sequence israndom? We cannot, because random sequences are precisdy those infinite
sequences which cannot be summarized in afinite formula In fact, the set of random sequences
isprecisgly the set of all sequences which we cannot write down in any way. We have proved
that the set exists, but we cannot demonsgtrate that any particular sequence belongsto it, because
in order to do so we would have to write down that particular sequence. Thisis not exactly a
logicd paradox, but it is certainly disconcerting.

G. Spencer-Brown has discovered a particularly poignant way of illugtrating the implications
of thislogical peculiarity. Suppose, he says, that you have built arandom number generator -- a
machine which isintended to generate numbersin such away that each number it generates has
absolutdy nothing to do with the others. Then how can you test it to seeif it works?
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Suppose you tested it and it gave out a hundred zerosin arow. Y ou would probably assume
that it was broken. But, Satisticaly spesking, atruly random number generator would generate a
hundred zerosin arow sometimes. Not very often, but sometimes. There's no reason that rare
occasion shouldn't comefirgt. After dl, the sequence consisting of a hundred zerasin arow isno
lesslikely than any other sequence of a hundred numbers.

So you run it some more. And the same thing happens -- it kegps giving tens. Still, you're not
redly justified in concluding that it doesn't work. The same argument gpplies. The fact isthat no
meatter what the machine does for the first n trids, it can be argued that a true random number
generator would be just as likely to generate that sequence as any other. So no matter what the
machine does, you cant judge its effectiveness.

Y ou could examine the mechanism of your random number generator to seeif it looks as
though it is operating randomly. For instance, you could supply it with amechanica coin tosser.
Then you'd probably be confident its answers were random, since you're probably confident the
results of a coin toss are random. But thisis nothing more or |ess than intuition: you're assuming
something is random because you haven't seen any dtructure to it in the past. An intuition is not
the same as atheoretical guarantee.

Essentidly, this paradox arises from the assumption that a random number generator must
give out every sequence of length n with equa frequency. But isthere any other way to define a
random number generator? One could define arandom number generator as a machine which
generates a normal sequence of numbers, but it is easy to see that thereis no way to prove a
finite sequenceis part of anorma sequence. Thisis because the definition of normdlity involves
going "far enough out" in a sequence. Once you go far enough out in anorma sequence, dl
subsequences of length n must occur equally often. But as n increases, o does the precise
meaning of "far enough”. Say you determine that the first million terms of a sequence present al
subsequences of length 1000 or less with the appropriate frequencies. That still doesn't tell you
whether or not the sequence repests a certain subsequence of length 1,000,000,000 too often. In
fact, for dl you know, the sequence could consist of the same milliondigit-long sequence
repeated over and over and over.

And remember, normdlity isin a sense aweaker concept than agorithmic randomness -- it
says that the decimad expansion of pi israndom. It is even more obvious thet there is no way to
tel if afinite ssquenceis part of an infinite (algorithmicaly) random sequence. After dl, if we
just see the fragment 01001001010011001001, how do we know it's part of a random sequence
and not part of the sequence 01001001010011001001 01001001010011001001
01001001010011001001 01001001010011001001.... which repeats the same fragment over and
over again. Thisdilemmais reminiscent of the problem of induction, to be discussed in Chapter
5.

Our discussion has been phrased in terms of binary sequences, but it could be generdized to
ded with any other mathematica objectsin exactly the same way. The conclusions would not
change a bit. The only things that are truly, mathematically random are infinitdly large entities
which can never even be summarized in finite formulas. And there is no practicd way to tell if a
given physical machine produces mathematicaly random segquences.
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In sum: randomness is a phantom. In redity, al we can do is assume thatthose things weve
detected no structure in are random. But thisis aworking assumption, not a mathematical
guarantee. And therefore, the question of whether the mind and brain are stochastic or
determinitic is a phantom as well. Thus there can never be an empirica reason to say that the
mind or the brain is a ochastic computer rather than a deterministic computer. Because,
scientifically spesking, to say that X israndomisonly to say that X has aspectsin which we
cannot detect any order. To declare that there is consequently no order there is unjustified.

3.2 Pattern

Charles S. Peirce, the turn-of-the-century American philosopher, liked to talk about the "one
law of mind." He gave this law many different formulations, the mogt suggestive of which was
only five words. "the tendency to take habits'. Thissmple, potent ideaiis a the heart of the
theory of mind to be presented in the following chapters. But instead, of "habits’, | prefer to
Spesk of "patterns’. And rather than taking "habit" or "pattern” as a primitive undefined term, |
will begin by providing a sketchy but completely rigorous mathemetica theory of pattern.

As| undergtand it, the concept of pattern relies on two smpler ideas. combination and
complexity. More precisaly, in order to talk about certain entities being patternsin other entities,
we must have

1) someway of combining certain pairs of entitiesy and z to obtain athird entity caled y*z

2) some way of computing, for every entity X, a nonnegative rea number %x% cdled the
complexity of x

Any st of entities which fulfills these requirements may be cadled apattern space. Formdly,
we may sy

Definition 3.1: A pattern spaceisaset (S,*,% %), where Sisaset, * isabinary operation
defined on some subset of SxS, and % % is amap from S into the nonnegetive red numbers.

Let's consder asmple example: Turing machines and finite binary sequences. If y isa Turing
machine and z is afinite binary sequence, then there isanaturd way of combining x andy -- just
put y on the input tape of the Turing machine, extending to the right of the tape head. In this
case, we can define x*y to be the binary sequence which appears on the tape of the Turing
machiney dfter, having been garted with z on its tape, its program finishes running. It istrue that
there is no guarantee the Turing machine will ever sop running. But if it doesn't, we can Smply
consder x*y to be undefined, and leaveit at that.

As for requirement number 2, we can define the complexity %z% of afinite binary sequence z
asitslength. And, roughly spesking, we can define the complexity %y% of a Turing machiney
as the length of its program. More precisaly, %0y% might be defined as length of the code
number which, when fed into a certain universa Turing machine, enables that Turing machine to
act exactly like machiney in every stuation. Here %y% and %z% are nonnegative numbers, so
the set of Turing machines and finite binary sequences is a pattern space.
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Since we shdl be returning to this example again and again, it is worth formulating a specific
notation. Let %z%rt denote the length of afinite binary sequence z, and let %y%r denote the
length of the program y.

Now we are prepared to ask: what is a pattern?

Firg of al, apattern is a pattern in something, in some entity x. Secondly, a pattern isan
ordered pair of entities, denoted (y,z). And findly, we have what | shdl cdl the fundamental
pattern inequality:

Definition 3.2: Let a, b, and ¢ denote constant, nonnegative numbers.
Then an ordered pair (y,z) isapattern in x if x=y*z and
aoy% + b%z% + cC(y,z) < %x%.

The only unfamiliar term hereis C(y,2). This denotes the complexity of obtaining x from (y,2).
If y isa Turing machine program and z is afinite binary sequence, we shdl let Cr(y,z) denote the
number of time steps which the Turing machine takes to stop when equipped with program y and
given z asinitid input.

For many purposes, the numbers a, b and c are not important. Often they can all be taken to
equa 1, and then they don't gppear in the formulaat al. But in some cases it may be useful to set
a=b=1 and c=0, for ingtance. Then the formula reads %y% + %z% < %x%. The congtants lend
the formula an dement of flexibility.

Intuitively, an ordered pair (y,2) isapatern in x if the complexity of y, plus the complexity of
z, plus the complexity of getting x out of y and z, is less than the complexity of x. In other words,
an ordered pair (y,z) isapatternin x if itisssimpler to represent x interms of y and z than it isto
say "X". The congtants g, b and ¢ just weight things: if a=3/4 and b=5/4, for example, then the
complexity of y counts less than the complexity of z.

The definition of pattern can be generdized to ordered n-tuples, and to take into account the
possihility of different kinds of combination, say *1 and *2.

Definition 3.3: An ordered sat of n entities (x1,X2,...,xn) isa  pattern in X if X=x1* 1x2* 2...* n-1Xn
and a%x1%+a%x2% ... +an%oxn %+ an+1C(Xa,...,Xn) < %ox%, where C(xa,...,Xn) iSthe complexity
of computing xu* 1x2...* 1% and a,...,an+1 are nonnegetive numbers.
Also, the following concept will be of use:
Definition 3.4: Theintensity in x of aordered pair (y,z) such

that y*z=x may be defined as

IN[(y,2)%x] = ( %x% - [06y% + b%2% + cC(y.2)] )/%x%.
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Obvioudy, this quantity is positive whenever (y,z) is a pattern in X, and negative or zero
whenever it isnot; and its maximum vaueis 1.

AN EXAMPLE: GEOMETRIC PATTERN

Most of our discussion will be devoted to Turing machines and binary sequences. However,
the definition of pattern does not involve the theory of computation. Essentidly, apatternisa
"representation as something ampler”; and smplicity need not necessarily be defined in terms of
computation. Instead of Turing machines and binary sequences et us now consider pictures.
Suppose that A is aone inch square black-and-white picture, and B is afive inch square picture
made up of twenty-five non-overlapping copies of A. Intuitively, itissimpler to represent B as
an arrangement of copiesof A, than it isto Smply congder B asa"thing in itsalf". Very roughly
gpesking, it would seem likely thet part of the process of remembering what B looks like consists
of representing B as an arrangement of copies of A.

Thisintuition may be expressed in terms of the definition of pattern. Where x and y are square
regions, let:

y*1z dencte the region obtained by placing y to theright of z
y* 2z denote the region obtained by placing y to the left of z

y* 3z denote the region obtained by placing y below z

y* 4z denote the region obtained by placing y above z.

And, dthough thisis obvioudy a very crude measure, |et us define the complexity %x% of a
square region with a black-and-white picture drawn in it as the proportion of the region covered
with black. Also, let us assume that two pictures are identica if one can be obtained by arigid
motion of the other.

The operations *1, *2, *3 and *4 may be caled smple operations. Compound operations are,
then, compositions of smple operations, such as the operation (x* tw* 2x)*aw. If y is a compound
operdion, let us define its complexity %y% to be the length of the shortest program which
compuites the actual statement of the compound operation. For instance, %(x* 1w* 2x)* aw% is
defined to be the length of the shortest program which outputs the sequence of symbols
"(XF W 2X)* aw'.

Wherey isasmple operation and z is a square region, let y*z denote the region that results
from applying y to z. A compound operation acts on a number of square regions. For instance,
(x* aw* 2x)* aw acts on w and x both. We may consider it to act on the ordered pair (x,w). In
generd, we may congder a compound operation y to act on an ordered set of square regions
(X1,%2,...,%n), Where xa is the | etter that occursfirgt in the statement of y, X isthe letter that occurs
second, etc. And we may define y* (xu,...,Xn) to be theregion that results from applying the
compound operation y to the ordered set of regions (xu,...,Xn).
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Let usreturn to the two pictures, A and B, discussed above. Let g=A* 1A*1A*1A*1A. Then, it
is easy to see that B=* +g* 40* 4g* 4g. In other words, B =
(A* 1A% 1A* IA* 1IA)* 4(A* 1IA* 1IA* 1IA* 1A)* 2(A* 1A* 1A* 1A* 1A)* 4

(A*1A* 1A% 1A% 1A)* 4(A* 1A% 1A* 1A% 1A). Where y is the compound operation given in the
previous sentence, we have B=y*A.

The complexity of that compound operation, %y%, is certainly very close to the length of the
program "Let g=A* 1A* 1A* 1A* 1A, print g*sg* a0* a0* 4q". Note that this program is shorter than
the program "Print (A* 1A% 1A% 1A% 1A)* a(A* 1A% 1A% 1A% 1A)* 4 (A* 1A% 1A% 1A% 1A)*

(A*1A* 1A% 1A% 1A)* 4(A* 1A% 1A* 1A% 1A)", 0 it is clear that the latter should not be used in the
computation of %oy%.

We have not yet discussed the term C(y,(Ba,...,Bn)), which represents the amount of effort
required to execute the compound operation y on the regions (xi,...,xn). For smplicity's sake, let
ussmply set it equa to the number of times the symbol "*" appearsin the statement of y; thet is,
to the number of smple operationsinvolvediny.

S0, is(y,A) apatternin B? Let us assume that the constants a, b and c are dll equal to 1. We
know y* A=B; the question is whether

%oy %o+ 96A%+C(y,A) < %B%.

According to the above definitions, %y% is about 37 symbols long. Obvioudy thisis a matter
of the particular notation being used. For instance, it would be lessif only one character were
used to denote *1, and it would be more if it were written in binary code.

And C(y,z) is even easer to compute: there are 24 smple operationsinvolved in the
congtruction of B from A.

So we have, very roughly speaking, 37 + %z% + 24 < %x%. Thisistheinequdity that must
be satisfied if (y,z) isto be consdered a pattern in X. Rearranging, we find: %z% < %x% - 61.
Recdl that we defined the complexity of aregion as the proportion of black which it contains.
This meansthat (y,z) isapatternin x if and only if it the amount of black required to draw B
exceeds amount of black required to draw A by more than 61. Obvioudy, whether or not thisis
the case depends on the units of measurement.

Thisisavery ample example, in that the compound operation y involves only one region. In
generd, we may define %(xa,...,Xn)%0=%x1%0+...+%x:%, assuming that the amount of black ina
union of digoint regionsis the sum of the amounts of black in the individud regions. From thisit
follows that (y,(xs,...,xn)) isapattern in x if and only if &80y% + b(Y0xa%+...+%x%) +
cC(y,(xa,...,xn)) < %x%.

Results smilar to these could aso be obtained from a different sort of analyss. In order to

ded with regions other than squares, it is desirable to replace *1, *2, *s, *4 withasngle"joining’
operation *, namely the set-theoretic union %. Let z=(xs,...,xn), et y be a Turing machine, let f be
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amethod for converting a picture into a binary sequence, let g be a method for converting
abinary sequence into a picture. Then we have

Definition 3.5: If x =x % x2 %...% xn, then (y,zf,g) isa paterninxif
oy %o+b%z%+c%f%t+d%g%oteC(y,z,f,g) < Yox%.

We have not said how %f% and %g% are to be defined. This would require a detailed
congderation of the geometric gpace containing X, which would take ustoo far afied. This
generd approach is somewhat smilar to that taken in Chaitin (1978).

ORDERSOF COMPLEXITY

It should be gpparent from the foregoing that complexity and pattern are deeply interrelated. In
this and the following sections, we shdl explore severd different gpproaches to measuring
complexity, al of which seek to go beyond the smplistic KCS approach. Remember, according
to the KCS gpproach, complexity means structurelessness. The most "random”, least structured
sequences are the most complex. The formulation of this gpproach was a great step forward. But
the next step isto give formulas which capture more of the intuitive meaning of the word
"complexity".

Firg, we shdl condder the ideathat pattern itsef may be used to define complexity. Recdl the
geometric example of the previous section, in which the complexity of a black-and-white picture
in asquare region was defined as the amount of black required to draw it. This measure did not
even presume to gauge the effort required to r epresent a black-and-white picturein asquare
region. One way to measure the effort required to represent such a picture, cal it x, isto look at
all compound operationsy, and all sets of square black-and-white pictures (x,...,x), such that
y* (X1,...,Xn)=X. One may then ask which y and (x,...,xn) give the smallest vaue of &0y% +
b(%x1% + ... + %x%) + c(y,(Xa,...,Xn)). Thisminima vaue of &%y% + b(Yox1%+...+%xn%) may
be defined to be the "second-order”" complexity of x. The second-order complexity isthen be a
measure of how simply x can be represented -- in terms of compound operations on square
regions.

In generd, given any complexity measure % %, we may use this sort of reasoning to define a
complexity measure % %%.

Definition 3.6: If % % isacomplexity measure, % %% is the complexity measure

defined so that %0x%% is the smallest vaue that the quantity a2oy% + b%z% + cC(y,z) takes
on, for any (y,z) such that y* z=x.

%ox%% measures how complex the smplest representation of x is, where complexity is
measured by % %. Sometimes, as in our geometric example, % % and % %% will measure very
different things. But it is not impossible for them to be identical.

Extending this process, one can derive from % %% a measure % %%: the smallest value that
the quantity
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aoy%% + b%z%% + cC(y,2)

takes on, for any (y,z) such that y*z=x. %x%% measures the complexity of the smplest
representation of x, where complexity is measured by % %%. It might be caled second-order
complexity. And from % %%, one may obtain a measure % %%, third-order complexity. It is
clear that this process may be continued indefinitely.

It isinteresting to ask when % % and % %% are equivaent, or dmost equivaent. For
ingtance, assumethat y isa Turing machine, and x and z are binary sequences. If, in the notation
given above, we let % %=% %r, then %x%% is anaturd measure of the complexity of a
sequence x. Infact, if a=b=1 and c=0, it isexactly the KCS complexity of x. Without specifying
a, b and c, let us nonetheless use Chaitin's notation for this complexity: 1(x).

Also, let us adopt Chaitin's notation 1(v%ow) for the complexity of v relative to w.
Definition 3.7: Let y be a Turing machine program, v and w binary

sequences, then 1(v%w) denotes the smalest vaue the quantity @y%r+cCr(y,w) takes on for
any sdf-delimiting program y that computes v when itsinput conssts of w.

Intuitively, this measures how hard it isto compute v given complete knowledge of w.
Finaly, it should be noted that % % and % %% are not dways substantiadly different:

Theorem 3.1: If %x%%=1(x), a=b=1, and c=0, then thereissome K so that for dl x %
%ox%% - Yox%%0% < K.

Proof: a%y%% + b%z%% + cC(y,z) = Y%y%% + %z%%. So, what isthe

smallest vaue that %y%% + %z%% assumes for any (y,z) such that y*z=x? Clearly, this
smalest value must be either equa to %x%%, or very closeto it. For, what if %y%% + %z%%
is bigger than %x%%? Then it cannot be the smalest %y%:% + %z%%, because if onetook z to
be the "empty sequence’ (the sequence consisting of no characters) and then took y to be the
shortest program for computing X, one would have %z%%=0 and %y%%=%x%%. And, on the
other hand, isit possible for %y%6%+%z%% to be smaller than %x%%? If %y%%e+%z%% were
smadler than x, then one could program a Turing machine with a program saying "Plug the
sequence z into the program y," and the length of this program would be less than %x%%, or a
least grester than %x%% by no more than the length of the program P(y,z)="Plug the sequence z
into the program y". This length is the congtant K in the theorem.

Corollary 3.1: For a Turing machine for which the program P(y,z)

mentioned in the proof is a"hardware function” which takes only one unit of length to
program, % %%=% %%.
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Proof: Both % %% and % %% are integer vaued, and by the theorem, for any x,  %x%% %
%ox%0% % %ox%%0+1.

PATTERNSIN PATTERNS; SUBSTITUTION MACHINES

We have discussed pattern in sequences, and patternsin pictures. It is also possible to andyze
patternsin other patterns. Thisisinteresting for many reasons, one being that when deding with
machines more redtricted than Turing machines, it may often be the case that the only way to
express an intuitively smple phenomenon is as a pattern in another pattern. This Situgtion will
arisein our analysis of the perceptua hierarchy, severa chapters down the road.

Let us congder asmple example. Suppose that we are not dedling with Turing machines, but
rather with "subgtitution machines' -- machines which are capable of running only programs of
the form P(A,B,C)="Wherever sequence B occurs in sequence C, replace it with sequence A".
Instead of writing P(A,B,C) each time, we shall denote such a program with the symbal (A,B,C).
For instance, (1,10001,1000110001100011000110001) = 11111. (A,B,C) should be read
"subgtitute A for Bin C".

We may define the complexity %x% of a sequence x as the length of the sequence, i.e.
%ox%=%x%t, and the complexity %y% of a subgtitution program y as the number of symbols
required to expressy in the form (A,B,C). Then, %1000110001100011000110001%=25,
%11111%-= 5, and %(10001,1,2)%=11. If z=11111, (10001,1,2)=
1000110001100011000110001. For example, is (10001,1,z), 11111) a patternin
1000110001100011000110001? What is required is that

a(11) + b(5) + cC((10001,1,2),11111) < 25.

If we take a=b=1 and c=0 (thus ignoring computationa complexity), this reducesto
11+5<25.
Thisistrue, soit isindeed a pattern.

If we take c=1 instead of zero, and leave aand b equa to one, then it will ill be a pattern, as
long as the computational complexity of obtaining 1000110001100011000110001 from
(10001,1,11111) does not exceed 9. It would seem most intuitive to assume that this
computationa complexity C((10001,1,2),11111) is equal to 5, Sncethereare 5 1'sinto which
10001 must be substituted, and there is no effort involved in locating these 1's. In that case the
fundamenta inequdity reads

11+5+5<25,
which verifiesthat a pattern isindeed present.

Now, let uslook at the sequence x = 1001001001001001000111001
1001001001001001001011101110100100100100100100110111 100100100100100100.
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Remember, we are not deding with genera Turing machines, we are only dealing with
substitution machines, and the only thing a substitution machine can do is plug one sequencein
for another. Anythingwhich cannot be represented in the form (A,B,C), in the notation given
above, is not a subdtitution machine.

There are two obvious ways to compute this sequence x on a subgtitution machine. Firgt of dl,
one can let y=(100100100100100100,B,z), and z= B 0111001B1011101110B110111B. This
amounts to recognizing that 100100100100100100 is repeated in x. Alternatively, one can let
y%=(100,B,z%), and |et z2%= BBBBBB0111001BBBBBB1011101110BBBBBB
110111BBBBBB. This amounts to recognizing that 100 is a pattern in X. Let us assume that
a=b=1, and c=0. Then in the first case %y% + %z% = 24 + 27 = 51; and in the second case
%y %% + %z%% = 9 + 47 = 56. Since %x% = 95, both (y,z) and (y%,z%) are patternsin x.

The problem is that, Shce we are only using subgtitution machines, there is no way to combine
the two patterns. One may say that 100100100100100100 a pattern in X, that 100 is a patternin
X, that 100 is a pattern in 100100100100100100. But, using only subgtitution machines, thereis
no way to say that the smplest way to look at x isas "aform involving repetition of
100100100100100100, which isitsdlf arepetition of 100".

Let usfirst consder %x%%. It isnot hard to see that, of dl (y,z) such that y isasubgtitution
meachine and z is a sequence, the minimum of %y% + %z% is obtained when
y=(100100100100100100,B,z), and z= B 0111001 B 1011101110 B 110111 B. Thus, assuming
aswe have that a=b=1 and c=0, %x%%=51. Thisis much less than %x%, which equals 95.

Now, let us consider this optimal y. It contains the sequence 100100100100100100. If we
ignore the fact that y denotes a substitution machine, and smply consider the sequence of
characters "(100100100100100100,B,2)", we can search for patternsin this sequence, just aswe
would in any other sequence. For instance, if we let y1=(100,C,z), and z=CCCCCC, then
y1i* z1=y, %y1%=10, and %z:%="6. It is apparent that (y1,z2) isa pattern in'y, since %y1% + %z2:%
=10 + 6 = 16, whereas %y% = 18. By recognizing the pattern (y,z) in x, and then recognizing
the pattern (y1,z1) in'y, one may express both the repetition of 100100100100100100 in x and the
repetition of 100 in 100100100100100100 as patterns in x, using only substitution machines.

Is (y1,z1) apattern in x? Strictly spesking, it is not. But we might cdl it asecond-level pattern
inx. It isapattern in apattern in x. And, if there were a pattern (y2,22) in the sequences of
symbols representing yz or zi, we could call thet athird-level patternin x, etc.

In generd, we may make the following definition:

Definition 3.8: Let F be amap from SxSinto S. Where afird-

level pattern in x isSmply a pattern in x, and nis an integer greater than one, we shall say that
Pisan nth-levd patternin X if thereis some Q so that Pisan n-1'th-levd patternin x and Pisa

pattern in FQ).
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In the examples we have given, the map F has been the implicit map fromsubgtitution
machines into their expression in (A,B,C) notation.

APPROXIMATE PATTERN

Suppose that yi* zi=X, whereas y2* z> does not equd X, but is still very closeto x. Say
%x%=1000. Then, even if %y1%+%z%=900 and %y2%+%2:%=10, (y2,22) isnot a patternin X,
but (y1,21) is Thisisnat aflaw in the definition of pattern -- after dl, computing something near
X is not the same as computing X. Indeed, it might seem that if (y2,22) were redly so close to
computing X, it could be modified into a pattern in x without sacrificing much smplicity.

However, the extent to which thisis the case is unknown. In order to incorporate pairs like
(y2,22), we shdl introduce the notion of gpproximate pattern.

In order to ded with approximate pattern, we must assume that it is meaningful to talk about
the distance d(x,y) between two elements of S. Let (y,z) be any ordered pair for whichy*z is
defined. Then we have

Definition 3.9: The ordered pair (y,z) isan approximate pattern

inx if [ 1+ d(x,y*2) ][ @6y% + b%z% + cC(y,z) | < %x%, where a, b, c and C are defined as
in the ordinary definition of pattern.

Obvioudy, when x=y*z, the distance d(x,y* z) between x and y*z isequd to zero, and the
definition of approximate pattern reduces to the normd definition. And the larger d(x,y* 2) gets,
the smdller &oy%+b%z%+cC(y,z) must be in order for (y,z) to qudify as a patternin x.

Of coursg, if the distance measure d is defined so that d(a,b) isinfinite whenever aand b are
not the same, then an gpproximate pattern is an exact pattern. This means that when one speaks
of "gpproximate pattern”, one is also peaking of ordinary, exact pattern.

Most concepts involving ordinary or "srict” pattern may be generdized to the case of
approximate pattern. For instance, we have:

Definition 3.10: Theintengty of an gpproximate pattern (y,z) inx is IN[(y,2)%X] = (%x%-
[1+d(X,y* 2)][a@%y%et+b%z%+cC(y,2)])/Y0x%.

Definition 3.11: Where v and w are binary sequences, the

approximate complexity of v rdaiveto w, lav,w), isthe smalest vaue that
[1+d(v,y*w)][ay%e+cC(y,w)] takes on for any program y with input w.

The incorporation of inexactitude permits the definition of pattern to encompass dl sorts of
interesting practica problems. For example, suppose x isacurve in the plane or some other
space, zisa st of pointsin that space, and y is some interpolation formulawhich assgnsto each
st of points a curve passing through those points. Then 14 (y,2)%0x] isan indicator of how much
use it isto approximete the curve x by gpplying the interpolation formulay to theset of points z.
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3.3 Meaningful Complexity

Koppd [8] has recently proposed an dternative to the KCS complexity measure. According to
Koppd's measure, the sequences which are most complex are not the structureless ones. Neither,
of course, are they the ones with very smple structures, like 00000000000.... Rather, the more
complex sequences are the ones with more "sophisticated” structures.

The basic idea[10] isthat a sequence with a sophisticated structureis part of anatural class
of sequences, dl of which are computed by the same program. The program produces different
sequences depending on the data it is given, but these sequences al possess the same underlying
dructure. Essentidly, the program represents the structured part of the sequence, and the data the
random part. Therefore, the "sophigtication” of a sequence x should be defined as the size of the
program defining the "naturd class' containing X.

But how isthis"naturd" program to be found? As above, wherey isaprogramand zisa
binary sequence, let %y% and %z% denote the length of y and z respectively. Koppd proposes
the following dgorithm, defined with respect to a Turing machine that has two tapes instead of
just one, a program tape and a data tape:

1) search over dl pairs of binary sequences (y,z) for which the two-tape  tgpe Turing machine
with program y and data z computes x, and find those pairs for which %y% + %z% is smalles,

2) search over dl pairsfound in Step 1, and find the one for which %y% is biggest. Thisvaue of
%z% is the "sophidication” of x.

All the pairsfound in Step 1 are "best” representations of X. Step 2 searches dl the "bext”
representations of x, and find the one with the most program (as opposed to data). This program
is assumed to be the naturd structure of x, and its length is therefore taken as a measure of the
sophigtication of the structure of x.

Thereis no doubt that the decomposition of a sequence into a Sructured part and arandom
part is an important and useful idea. But Koppd's dgorithm for achieving it is conceptualy
problematic. Suppose the program/data pairs (y1,z1) and (y2,22) both cause a Turing machine to
output X, but whereas %y1%=50 and %z:%=300, %y-%=250 and %z%=110. Since
%y1%+%21%=350, whereas %y2%+%2%=360, (y2,22) will not be sdlected in Step 1, which
searches for those pairs (y,z) that minimize %y%+%z%. What if, in Step 2, (y1,21) is chosen as
the pair with maximum %y%? Then the sophidtication of x will be set a %y1%=50. Does it not
seem that the intuitively much more sophisticated program ye2, which computes x almost aswell
as y1, should count toward the sophigtication of x?

In the language of pattern, what Koppel's algorithm doesis:

1) Locate the pairs (y,2) that are the most intense patternsin x according  to the definition of
pattern with % %, a=b=1, c=0
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2) Among these pairs, select the one which isthe most intense patterninx  according to the
definition of pattern with % %, a=1, b=c=0.

It gpplies two different specid cases of the definition of pattern, one after the other.

How can dl this be modified to accommodate examples like the pairs (yz,z2), (Y2,22) given
above? One approach isto look at some sort of combination of %y%+%2z% with %oy%.
%y%+%z% measures the combined length of program and data, and %y% measures the length
of the program. What is desired isasmall %y%+%z% but alarge %y%. Thisis some mativation
for looking at (Yoy%o+%z%0)/%y%. The smadler %y%+%z% gets, the smdler this quantity gets,
and the bigger %y% gets, the smdler it gets. One gpproach to measuring complexity, then, isto
search dl (y,z) such that x=y* z, and pick the one which makes (%oy%+%z%)/%y% smallest. Of
course, (Yoy%o+%z%)/%y% = 1 + %z%/%y%, SO whatever makes (Yoy%ot+%z%)/%y% smdlest
aso makes %z%/%y% smdlest. Hence, in this context, the following is naturd:

Definition 3.12: The crudity of apattern (y,z) is %z%/%y%.

The crudity issmply the ratio of datato program. The cruder a pattern is, the greater the
proportion of datato program. A very crude pattern is mostly data; and a pattern which is mostly
program is not very crude. Obvioudy, "crudity" isintended as an intuitive opposgite to
"sophidtication”; however, it is not exactly the opposite of "sophigtication” as Koppd defined it.

This gpproach can aso be interpreted to assign each x a"natural program™ and hence a
"naturd cdass'. One must Smply look at the pattern (y,z) in x whose crudity isthe smalest. The
program y associated with this patternis, in a sense, the most natura program for x.

LOGICAL DEPTH

Bennett [9], as mentioned above, has proposed a complexity measure called "logica depth”,
which incorporates the time factor in an interesting way. The KCS complexity of x measures
only the length of the shortest program required for computing X -- it says nothing about how
long this program takes to run. Isit redly correct to cal a sequence of length 1000 smpleif it
can be computed by a short program which takes a thousand years to run? Bennett'sideaiis to
look at the running time of the shortest program for computing a sequence x. This quantity he
cdlsthelogical depth of the sequence.

One of the motivations for this approach was a desire to capture the sense in which a
biologica organism is more complex than a random sequence. Indeed, it is essy to see that a
sequence X with no patternsin it has the smallest logicaldepth of any sequence. The shortest
program for computing it is"Print X", which obvioudy runs faster than any other program
computing a sequence of the same length as x. And there is no reason to doubt the hypothesis
that biologica organisms have ahigh logica depth. But it ssemsto usthat, in some ways,
Bennett's definition is nearly as counterintuitive as the KCS approach.

Suppose there are two competing programs for computing X, program y and program y'. What
if y hasalength of 1000 and arunning time of 10 minutes, but y* has alength of 999 and a
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running time of 10 years. Then if y' is the shortest program for computing X, the logica depth of
X isten years. Intuitively, this doesn't seem quite right: it is not the case that x fundamentally
requires ten years to compute.

At the core of Bennett's measure is the idea that the shortest program for computing X isthe
most naturd representation of x. Otherwise why would the running time of this particular
program be a meaningful measure of the amount of time x requires to evolve naturdly? But one
may define the "most naturd representation” of a given entity in many different ways. Bennett's
isonly the smplest. For instance, one may study the quantity dC(y,z) + e%z%/%y% +
f(%y%+%2z%), where d, e and f are positive constants defined so that d+e+f=3.  The
moativation for thisis asfollows. The amdler %z%/%y% is, the less crude is the pattern (y,2).
And, asindicated above, the crudity of a pattern (y,z) may be interpreted as a measure of how
naturd arepresentation it is. The smaler C(y,2) is, the lesstimeit takes to get x out of (y,2).
And, findly, the smaler %y%+%z% is, the more intense a pattern (y,z) is. All these facts

uggest the following:

Definition 3.13: Let m denote the smdlest vaue that the quantity

dC(y,z) + €%z%/%y% + f(Yoy%ot+%z%) assumes for any pair (y,z) such that x=y*z (assuming
there is such aminimum vaue). The meaningful complexity of x may then be defined asthe
time complexity C(y,z) of the pattern (y,z) a which this minimum m is attained.

Setting d=e=0 reduces the depth complexity to the logica depth as Bennett defined it. Setting
e=0 means that everything is as Bennett's definition would have it, except that cases such asthe
patterns (y1,21), (Yy2,22) described above are resolved in amore intuitive matter. Setting f=0 means
that one is consdering the time complexity of the most sophisticated -- least crude, most
structured -- representation of x, rather than merely the shortest. And keeping al the congtants
nonzero ensures a balance between time, space, and sophistication.

Admittedly, this approach is not nearly so tidy as Benndtt's. Its key shortcoming isitsfalure
to yidd any particular number of crucid sgnificance -- everything depends on various factors
which may be given various weights. But there is something to be said for considering dl the
relevant factors.

3.4 Structural Complexity

We have discussed severd different measures of static complexity, which measure rather
different things. But al these measures have one thing in common: they work by singling out the
one pattern which minimizes some quantity. It is equaly interesting to sudy the total amount of
gructure in an entity. For instance, suppose x and X% both have KCS complexity A, but whereas
x can only be computed by one program of length A, x% can be computed by a hundred totaly
different programs of length A. Does it not seem that x% isin some sense more complex than x,
that there is more to x% than to x?

Let usdefine the structure of x asthe sat of dl (y,z) which are approximate patternsin x, and
denote it St(x). Then the question is: what is ameaningful way to measure the size of P(x). At
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firsgt one might think to add up the intengties [ 1+d(y* z,X)] [é20y%+b%z%+cC(y,z)] of dl the
dementsin P(x). But this gpproach has one crucid flaw, reveded by the following example.

Say x isasequence of 10,000 characters, and (y1,21) isa pattern in x with %2%=70,
%y1%=1000, and C(y1,21)=2000. Suppose that y» computes the first 1000 digits of x from the
firs 7 digits of zi, according to a certain dgorithm A. And suppose it computes the second 1000
digits of x from the next 7 digits of z, according to the same dgorithm A. And so on for the third
1000 digits of z, etc. -- dways usng the same dgorithm A.

Next, consider the pair (y1,z1) which computes the first 9000 digits of x in the same manner as
(Y2,22), but computes the last 1000 digits of x by storing them in z. and printing them after the
rest of its program finishes. We have %2%=1063, and surely %y-% is not much larger than
%y1%. Let's say %y2%=150. Furthermore, C(y2,22) is certainly no greater than C(y1,z): after dl,
the change from (y1,21) to (y2,22) involved the replacement of serious computation with smple
dorage and printing.

The point isthat both (y1,z1) and (y2,22) are patternsin x, but in computing the total amount of
dructure in X, it would be foolish to count both of them. In generd, the problem is that different
patterns may share smilar components, and it is unacceptable to count each of these components
severd times. In the present example the solution is easy: don't count (y2,z2). But one may aso
congtruct examples of very different patterns which have a significant, sophisticated component
in common. Clearly, what is needed is agenerd method of dedling with Smilarities between
patterns.

Recall that 1a(v%w) was defined as the gpproximate version of the effort required to compute
v from w, so that if v and w have nothing in common, la(v,w)=Iav). And, on the other hand, if v
and w have alarge commoncomponent, then both Ia(v,w) and Ia(w,v) are very smdl. [a(v%w) is
defined only when v and w are sequences. But we shdl also need to talk about one program
being smilar to ancther. In order to do this, it suffices to assume some standard "programming
language' L, which assignsto each program y a certain binary sequence L(y). The specificsof L
areirrdevant, so long asit is computable on a Turing machine, and it does not assign the same
sequence to any two different programs.

Theintroduction of a programming language L permits us to define the complexity of a
programy as l{(L(y)), and to define the complexity of one program y: relative to another
program yz, as la(L (y1)%L (y2)). Asthe lengths of the programsinvolved increase, the differences
between programming languages matter less and less. To be precise, let L and La be any two
programming languages, computable on Turing machines. Then it can be shown that, as L (y1)
and L (y2) approach infinity, the ratios la(L (y1))/1a(L1(y1)) and la(L (y1)%6L (y2))/1a(L1(y1)%6L 1(y2))
both approach 1.

Where z is any binary sequence of length n, let D(z) be the binary sequence of length 2n
obtained by replacing each 1 in z with 01, and each 0 in z with 10. Wherew and z are any two
binary sequences, let wz denote the sequence obtained by placing the sequence 111 at the end of
D(w), and placing D(z) at the end of this composite sequence. The point, asusud, isthat 111
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cannot occur in either D(z) or D(w), so that wz is essentidly w juxtaposed with z, with 111 asa
marker inbetween.

Now, we may define the complexity of a program-data pair (y,z) as la(L(y)z), and we may
define the complexity of (y,2) rdativeto (y1,z1) as la(L(y)z%L (yr)z). And, findly, we may
define the complexity of (y,z) rddiveto aset of pars{(y1,2),(y2,2),...,(yx,2)} to be
la(L(y)z%L (y1)z1L (y2) z2...L (yx) ). Thisis the tool we need to make sense of the phrase "the total
amount of gructure of x".

Let Sbe any set of program-data pairs (X,y). Then we may define the size %S% of Sasthe
result of the following process:

Algorithm 3.1:

Step 0. Make alist of all the patternsin S, and label them  (y1,21), (y2,22), ..., (Yn,20).
Step 1. Let su(x)=lo(L (y1)21).

Step 2. Let s(x)=s1(X)+Ha(L (12)22)1 (L (y2)21).

Step 3. Let s3(X)=s(X)H oL (ys)z%L (y2) 2L (y2) 22))

Step 4. Let so(X)=s3(X)+Ha(L (y4)z2%0L (Y1) 1L (y2) 2oL (y3) 23))

Step N. Let %SY%o=su(X)=sv-1(X)+

la(L (yN)2n%0L (Y1) z1L (V2) 22)...L (YN-1) 2n-1)

At the k'th step, only that portion of (yk,z) which isindependent of {(y1,2),...,(Y«-1,21)} is added
onto the current estimate of %S%. For instance, in Step 2, if (y2,22) isindependent of (y1,zz), then
this step increases the initid estimate of %S% by the complexity of (y2,22). But if (y2,z) ishighly
dependent on (y1,z1), not much will be added onto the firgt estimate. It is not difficult to see that
this process will arrive at the same answer regardless of the order in which the (yi,z) appear:

Theorem 3.2: If =1, the result of the above agorithm isinvariant under permutation of the
(V,2).

Where St(x) isthe set of al patternsin x, we may now define the structural complexity of x
to be the quantity %St(X)%. Thisis, | sugges, the sense of the word "complexity” that one uses
when one says that a person is more complex than atree, which ismore complex than a
bacterium. In away, structura complexity measures how many ingghtful statements can
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possibly be made about something. There is much more to say about a person than about atree,
and much more to say about a tree than a bacterium.

ALGEBRA AND TOPOLOGY OF PATTERN SPACE

From the definition of structural complexity we may obtain the extremey useful notion of
gructural smilarity, which we shall dso refer to as patter n-distance. Asthe name suggests,
thisisameasure of how "closg" two entities are, structurally spesking. We denote the structural
gmilarity of x and y by d«(Xx,y), and define it as the structural complexity of the symmetric
difference of St(x) and St(y). It measures the amount of patternin x but not y, or in'y but not x.
This concept will play acentrd role in our treetment of memory and anaogy.

The following concept, though it refers only to structure, not structurd complexity, is equaly
essentid.

Definition 3.14: The emergence between x and y is defined as
Em(x,y) = S(xUy) - SX(y) - St(y)

Theintuitive meaning of emergence should be dear: it iswhat is present in the whole but not
the parts. In the realm of pattern, the wholeisin generd more than the sum of the parts, in the
sensethat not dl the patterns in the whole are patterns in the parts.

Findly, the following idea, though not so crucid, sheds some light into certain matters.
Definition 3.15: (y1,21) is said to be complementary to (y2,22) in x tothefollowing extent:

1 - IN(X,YLz)/[IN(L(Y2),y2,22) + IN(z2,y2,22)]. If y1 isScomplementary toy> inx and y2 is
complementary to y1 in X, then yr and y2 are said to be complementary in x.

Complementarity, intuitively, is a very weak form of negation. If y: ishighly complementary
to y2 in x, that means that athough one can effectively represent x in terms of ether y1 or e,
once one has represented X in terms of y1, one cannot effectively represent the dements of this
representation in terms of ye. If y1 and y2 are both entirdly "independent” in S(x), this will
usualy be the case.

Crude intuitive examples of this phenomenon may be drawn from nearly any fied of study.
For ingtance, in quantum mechanics one may represent an dectron asawave or as a particle, but
once one has represented it as either one cannot interpret one's representation in terms of the
other one. Or: one may view the American economy as a battleground of class sruggle, or asan
arena of gradud evolution by natural selection through competition -- but once one has
diagrammed the economy in terms of conflicting classes, one cannot andlyze the diagram in
Socia Darwinist terms; and vice versa. Of course, these are little more than andogies; in order to
make such applications a dl precise one would have to provide exact definitions of the terms
involved.
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COMPUTABLE APPROXIMATIONS

The gtructurd complexity of x isameasure of the tota Sze of the st of dl regularitiesin x.
Unfortunately, as | noted above, it is uncomputable. Step 0 of Algorithm 3.1, initsfull
generdity, is not programmable. Therefore, in order to goply the notion of structural complexity
to real-world problems, it is necessary to restrict oneself to some particular class of patterns. One
way to do thisisvia schematic structural complexity (SSC), asimple notion that will lead us
naturaly to more interesting complexity measures such as the Lempd-Ziv complexity and the
n'th order Boolean complexities.

In the theory of genetic classfier systems (Goldberg, 1989), a schemalis a sequence such as
1001**1011101010* 1**111, where* isa"don't care" symbol sgnifying that either aOoral
may occupy the indicated place. Let us consder adightly more generd notion of schema, in
which each "dont care” symbol has atag (*1,*2, etc.), and each "don't care” symbol may stand
for abinary sequence of any length. And let us define a schematizer as afunction which maps
schema into binary sequences, by inserting in place of each occurence of the "don't care” symbol
*i some binary sequence wi. Each pair (schematizer, schema) is a schematic program; it defines
aunique binary sequence.

The schematic structura complexity (from here on, SSC) of abinary sequence may be
described in terms of Algorithm 3.1 with amodified initid step.

Algorithm 3.2:
Sep 0. Make aligt of al schematic programsthat are patternsin x, and label them ya,...,yn
Steps 1-N. Asin Algorithm 3.1

The result of thisdgorithm may be cdled the schematic size of x, the well-definition of which
follows from the following generdization of Theorem 2.1.

Theorem 3.1. Theresult of Algorithm 4.1 isinvariant with respect to permutetion of the y:.

In analogy to structurd complexity, the SSC of a sequence x may be defined as the schematic
gze of the st of dl patternsin x, S(X).

A schematic program represents the smplest sort of compression: it compresses an image or
sequence by abstracting repeated figures. A more flexible approach may be obtained by
consdering more genera programs. For instance, one might define a metaschematizer asa map
from schema to schema, which takes in a schema and replaces each occurence of the "don't care”
symbol *i with some schema S. A metaschematic program is then any program whose action
may be represented in the form schematizer(mu(me(....(mx(schema))...)), where the m are
metaschematizers.

Given this, one may define the "metaschematic structurd complexity” of a sequencein an
obvious way. This complexity measure recognizes not only repeated figures, but repested figures
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within repeated figures and so on. It is new in detail but not in concept -- it isavery close
gpproximation to the Lempd-Ziv complexity (Lempe and Ziv, 1978).

The Lempe- Ziv complexity missesagreet ded of structure. By definition, no computable
gpproximation to the structural complexity can capture every type of structure. However, thereis
alarge gap between repetitions and completely generd patterns. One way to fill this gap iswith
the n'th order Boolean structural complexity. This complexity measure may be developed by
andogy to the schematic and metaschematic Structurd complexities.

Wewill need to use vector Boolean operations, which act coordinatewise on Boolean
sequences. For example the vector negation of 1010110 is 0101001, the vector conjunction of
11010 and 01011 is 11011. And we will say that a Boolean function (of an arbitrary number of
variables) isof order nif it can be written using less than n+1 digunctions and conjunctions.

Ann'th order Boolean schematic program for computing an array X may be defined asa
pair (schema, schematizer), where the schema is a sequence composed of of O's, 1's, unlabeled
"don't care’ symbols*, and k different labeled "don't care” symbols *1,...,* k. The schematizer
consggsof: 1) amemory, which consists of a set of | binary sequences, and 2) a collection of k
vector Boolean functions fi,...,fk of order n, each of which takes exactly | sequences as
arguments. The k'th array Boolean function computes the array to be substituted for the "don't
care' symbol *i.

From the n'th order Boolean schematic programs one may obtain n'th order Boolean
metaschematic programs in anaturd way. The n'th order Boolean structurd complexity is then
defined in terms of these programs, just as the metaschematic structura complexity is defined in
terms of ordinary metaschematic programs. It should be clear that any pattern can be expressed
as an n'th order Boolean schematic program for some n. Therefore, the n'th order Boolean
programs are one way of forming a bridge between Lempd- Ziv complexity and generd
Sructurd complexity.

These gpproximations are rather technica; they are not as conceptually elegant as the
gructurd complexity itsef. However, it is clear that at least the n'th order Boolean complexity is
relevant to mentdity, because no brain can compute Boolean functions of arbitrarily high order.

4

Intelligence and Mind

4.0 The Triarchic Theory Of Intelligence
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Though there isavadt psychologicd literature on intelligence, it contains surprisingly few
indghtsinto the foundationd questions which interest us here: what isintdligence, and how can
it, practicaly or theoreticdly, be quantified? The problem is that, as Robert Sternberg has
observed, theories of intelligence are not dl theories of the same thing. Rather, they tend to be
theories of different aspects of intelligence. To make matters worse, the theorists who propose
these theories rarely make it clear just what aspects of intelligence their theories embrace (1987,
p.141).

The psychology of intelligence has dwelled on the context- specific and the easily measurable.
But transcending the bounds of particular contextsis what intdligence is dl about; and thereis
no reason to expect this ability to be easy to gauge.

The confusion may be traced back to the turn of the century. First, Galton (1883) andyzed
intelligence as a combination of various psychophysicd abilities, everything from srength of
grip to reaction time. And then, not too much later, Binet and Smon (1916) proposed that
intelligence isamaiter of problem solving, logica reasoning and spatid judgement. Binet's
gpproach was of more immediate practica use -- it led to the .Q. test, which isfairly good at
predicting certain aspects of behavior; e.g. a predicting which children are capable of benefiting
from schooling. But aspects of Galton's theory have recently been revived (Carroll, 1976; Jensen,
1982). It isnow clear that mental speed is closdy connected with intelligence; and some modern
psychologists (Hunt, 1978; Jensen, 1979) have advocated studying intelligence in terms of
quantities such as peed of lexical access. Now it is recognized that the ideas of Gaton and
Binet, though at first glance contradictory, are on most important points complementary: they
refer to different aspects of intelligence.

Just as modern psychology hasintegrated the ideas of Galton and Binet, Sternberg's "triarchic
theory" proposes to synthesize severa gpparently contradictory currentsin the contemporary
psychology of intelligence. It seeks to understand the interconnections between: 1) the Structures
and processesunderlying intelligent behavior, 2) the application of these Structuresto the
problem of attaining goasin the externd world, and 3) the role of experiencein molding
inteligence and its gpplication. Sternberg's triarchic theory is useful here, not because its details
are particularly smilar to those of the mathematica theory to be presented below, but rather
because it provides a convenient context for relating this abstract mathemetics with
contemporary psychologica research. The triarchic theory begins with mainstream psychology
and arrives a the somewhat radical hypothess thet, athough intelligence can be defined only
relative to a certain context, there are certain universa structures underlying al intelligent
behavior.

STRUCTURES AND PROCESSES
In the triarchic theory, the structures and processes underlying intelligence are divided into
three different categories: metacomponents, performance components, and knowledge-

acquisition components. From the point of view of interna structure, intelligence is understood
as a problem-solving activity which is dlocated specific problems from some externa source.
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Metacomponents have to do with the high-level management of problem-solving: deciding on
the nature of the problem with which one is confronted, sdecting a problem solving strategy,
selecting a mentd representation of the problem, dlocating mental resources to the solution of
the problem, monitoring problem-solving progress, and so on. Studies show that al of these
factors are essentid to intdligent performance at practica tasks (MacLeod, Hunt and Mathews,
1978; Kosdyn, 1980; Hunt and Lansman, 1982).

Metacomponents direct the search for solutions; but they do not actualy provide answersto
problems. The mentd structures which do this are caled performance components. These are of
less philosophicd interest than metacomponents, because the human mind probably contains
thousands of different specid-case problem-solving dgorithms, and there is no reason to suppose
that every inteligent entity must employ the same ones. Mogt likely, the essentid thing isto have
avery wide array of performance components with varying degrees of specialization.

For example, consder a standard anadlogy problem: "lawyer isto client as doctor isto a)
patient b) medicing’. Solving this problem is aroutine exercise in induction. Given three entities
W, X and:

1) the memory is searched for two entitiesW and X,
2) ardaion R(W,X) between the two entitiesisinferred from  the memory,
3) the memory is searched for some Z so that R(Y,Z) holds

This process is a performance component, to be considered in much more detail in the following
chapter. It isnot "low-levd" in the physiologica sense; it requires the coordination of three
difficult tasks. locating entities in memorybased on names, inference of relations between
entities, and locating entities in memory based on abgtract properties. But it is clearly on alower
level than the metacomponents mentioned above.

Neisser (1983), among others, believes that the number of performance componentsis
essentidly unlimited, with new performance components being generated for every new context.
Inthis point of view, it isfutile to attempt to list the five or ten or one hundred most important
problem solving agorithms, the important thing is to understand how the mind generates new
dgorithms. Thereis certainly some truth to this view. However, it may be argued that there are
some relaively high-level performance components which are of universa significance -- for
ingtance, the three forms of analogy to be discussed in the following chapter. These generd
agorithms may be used on their own, or in connection with the more specific proceduresin
which Neisser, Hunt (1980), Jensen (1980) and others are interested.

This brings us to the knowledge acquisition components of intelligence: those structures and
processes by which performance components and metacomponents are learned. For example,
three essentid knowledge acquisition components are: Sfting out relevant from irrdlevant
information, detecting significant coincidences (Barlow, 1985), and fusing various bits of
information into a coherent modd of a Stuation. These three abilitieswill be consdered in detall
in later chapters.
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Theimportance of effective knowledge acquistion for inteligence is obvious. The ability to
speed-read will hdp one perform "intdligently” on an 1.Q. test; and the ability to immediatdy
detect anomaous features of the physicad environment will help one perform intelligently asa
detective. One might argue that factors such asthis do not redly affect inteligence, but only the
ability to put intelligence to practicd use. However, intelligence which is not used a al cannot
be measured; it is hard to see how it could even be studied theoretically. The mathematical
theory of intdligence to be given below provides a partia way around this dilemma by admitting
that one part of amind can be inteligent with respect to another part of the mind even if it
displays no intdligent behavior with respect to the external environment.

INTELLIGENCE AND EXPERIENCE

The experientia approach to intelligence begins with the idea that most behavior is " scripted”
(Schank and Abelson, 1977). Mogt actions are executed according to unconscious routine; and
grict adherence to routine, though certainly the inteligent thing to do in many circumstances,
can hardly be called the essence of intelligence. 1t would rather seem that the core of intelligence
isto be found in the lear ning of new scripts or routines.

For instance, one might focus on the rate a which newly learned scripts are "automatized'”.
The fagter abehavior is made automatic, the faster the mind will be free to focus on learning
other things. Or one could study the ability toded with nove Stuations, for which no script yet
exigs. Indgght, the ahility to synthesize gppropriate new metacomponents, performance
components and even knowledge acquisition components, is essentid to intelligence. It has been
extensvdy studied under the labd "fluid intdligence’ (Snow and Lohman, 1984).

The relevance of insght to tests such asthe 1.Q. test is a controversd matter (Sternberg,
1985). It would seem that most 1.Q. test problems involve afixed set of high-leve
metacomponents, aswell as afixed set of performance components. analogical, spatid and
logical reasoning procedures. In other words, in order to do well on an 1.Q. test, one must know
how to manage one's mind in such away asto solve puzzles fast, and one must dso have a
mastery of a certain array of specidized problem-solving skills. However, in this example one
sees that the dichotomy between metacomponents and performance components is rather coarse.
It would seem that, to do well on an I.Q. test, one hasto have agreat dedl of insght on an
intermediate plane: on aleve between that of specific problem-solving methods and that of
overal management drategies. One must have a mastery of gppropriate high-level and low-leve
scripts, and an ability to improvise intermediate-level behavior.

INTELLIGENCE AND CONTEXT
One may look at intelligence as an array of structures and processes directed toward the
solution of specific, externdly given problems. One may undergand intelligence as the lear ning
of new structures and processes. Or -- third in Sternberg'striarchy -- one may hypothesize that
intdligent thought is directed toward one or more of three behaviora gods. adaptation to

an environment, shaping of an environment, or selection of an environment. These three
goas may be viewed as the functions toward which inteligence is directed: Inteligenceis not
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amless or random mentd activity that happens to involve certain components of information
processing a certain levels of experience. Rather, it is purposefully directed toward the pursuit of
these three global godls, dl of which have more specific and concrete ingantiationsin people's
lives. (1987, p.158)

This contextua gpproach to intelligence has the advantage that it is not biased toward any
particular culture or pecies.

For ingtance, Cole, Gay and Sharp (1971) asked adult Kpelle tribesmen to sort twenty familiar
objects, putting each object in a group with those objects that "belonged” with it. Western adults
tend to sort by commonality of attributes: e.g. knives, forks and spoons together. But Western
children tend to sort by function: e.g. aknife together with an orange. The Kpelle sorted like
Western children -- but the punchline is, when asked to sort the way a stupid person would, they
sorted like Western adults. According to their culture, what we congider intdligent is stupid; and
vice versa. By asking how well a personhas adapted to their environment, rather than how well a
person does a certain task, one can to some extent overcome such cultura biases.

Sternberg distinguishes adaptation to an environment from shagping an environment and
selecting an environment. In the genera framework to be presented below, these three abilities
will be synthesized under one definition. These technicdlities asde, however, there is a serious
problem with defining intelligence as adaptation. The problem isthat the cockroach is very well
adapted to its environment -- probably better adapted than we are. Therefore, the fact that an
entity iswell adapted to its environment does not imply thet it isintdligent. It istrue that
different cultures may vaue different qudities, but the fact that a certain culture vaues physicd
drength over the ahility to reason logicdly does not imply that physicad strength isavdid
measure of intelligence.

Sternberg dismisses this objection by postulating that

the components of intelligence are manifested at different levels of experience with tasks
and in Stuations of varying degrees of contextud relevance to a person's life. The components of
intelligence are... universd to intelligence: thus, the components that contribute to intelligencein
one culture do so in dl other cultures aswell. Moreover, the importance of dealing with novelty
and automatizetion of information processing to intelligence are... universd. But the
manifestations of these components in experience are... relative to cultura contexts (1987, p.
168).

Thisis a powerful satement, very Smilar to one of the hypotheses of this book: thet thereisa
universal structure of intelligence. However, psychology brings us only this far. Its conceptud
tools are not adequate for the problem of characterizing this structure in a genera, rigorous way.
4.1 Intelligence as Flexible Optimization

Having just reviewed certain agpects of the psychologica perspective on intelligence, it is

worth observing how different the engineering perspective is. As one might expect, engineers
have a much smpler and much more practica definition of intelligence.
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Control theory dedls with ways to cause complex machines to yield desired behaviors.
Adaptive control theory deds with the design of machines which respond to externd and interna
gimuli and, on thisbasis, modify their behavior gppropriately. And the theory of intelligent
control smply takes this one step further. To quote atextbook of automata theory (Aleksander
and Hanna, 1976)

[An] automaton is said to behave "intdligently” if, on the bass of its "training" data which
is provided within some context together with information regarding the desired action, it takes
the correct action on other data within the same context not seen during training.

Thisisthe sense in which contemporary "atificid intelligence' programs are intdligent. They
can generdize within their limited context: they can follow the one script which they are
programmed to follow.

Of course, thisis not redly inteligence, not in the psychologica sense. It istrue that modern
"intdligent” machines can play championship chess and diagnose diseases from symptoms --
things which the common person would dassify asintdligent behavior. On the other hand,
virtualy no one would say that walking through the streets of New Y ork requires much
intelligence, and yet not only human beings but rats do it with little difficulty, but no machine yet
can. Exiding intdligent machines can "think” within their one context -- chess, medica
diagnosis, circuit design -- but they cannot ded with Stuations in which the context continudly
shifts, not even aswell as arodent can.

The above quote defines an intelligent machine as one which digplays "correct” behavior in
any Stuation within one context. Thisis not psychologicaly adequate, but it ison the right
track. To obtain an accurate characterization of intelligence in the psychologica sense, one must
merely modify their wording. In their intriguing book Robots on Y our Doorstep, Winkless and
Browning (1975) have done so in avery degant way:

Intelligence is the ability to behave gppropriately under unpredictable conditions.

Despiteits vagueness, this criterion does serve to point out the problem with ascribing
intelligence to chess programs and the like: compared to our environment, at least, the
environment within which they are capable of behaving appropriately is very predictable indeed,
inthat it congsts only of certain (Smple or complex) patterns of arrangement of avery smal
number of specificaly structured entities.

Of course, the concept of gppropriatenessisintringcally subjective. And unpredictability is
relative aswdl -- to a creature accustomed to living in interstellar space and ingde stars and
planets as well as on the surfaces of planets, or to a creature cgpable of living in 77 dimensions,
our environment might seem just as predictable as the universe of chess seemsto us. In order to
meake this folklore definition precise, we must first of al confront the vaguenessinherent in the
terms "appropriate”’ and "unpredictable.”

Toward thisend, let us congtruct a smple mathematica modd. Consder two computers. S
(the system) and E (the environment), interconnected in an adaptive manner. That is, let &t
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denote the state of the system at timet, and let B denote the state of the environment at timet.
Assume that S=f(S-1,Et-1), and Et=g(St-1,Et-1), where f and g are (possibly nondeterministic)
functions characterizing S and E. What we have, then, is a discrete dynamica system on the set
of al possible sates SXE: an gpparatus which, given a (system date, environment sete) pair,
yidds the (system state, environment state) pair which isits natural successor. We need to say
what it means for S to behave "gppropriately”, and what it means for E to be "unpredictable’.

4.2 Unpredictability

Intuitively, a system is unpredictableif alot of information about its past Sate tendsto yield
only alittle information about its future sate. There are many different waysto make this
precise. Here we shdl congider four different definitions of unpredictability, three of them
origind.

Let us condder adiscrete dynamica system (f,X), which conssts of a"state space’ X and a
function f mapping X into X. For the details to follow, it should be assumed that X isafinite
gpace, S0 that concepts of agorithmic complexity may be easily applied. But in fact, the ideas are
much more generd; they apply to any metric space X. A trajectory of the sysem (f,X) isa
sequence (X,f(x),f2(x),...), where fn(x)=f(f(...f(x)...)), the n'th iterate of f gpplied to x.

In this notation, we may define the Liapunov sensditivity, or L.-sengtivity, of adynamicd
system asfollows

Definition 4.1: The L.-sengtivity K(gn) of adynamicd sysem (f,X) a apointxin X is
defined asthe average over dl y so that d(x,y)<aof d(fn(x),mn(y)).

The function K telsyou, if you know x to within accuracy a, how well you can esimate fn(x).

Different choices of "averaging” function yield different definitions. The most common way
of averaging two entities A and B is the arithmetic mean (A+B)/2, but there are other common
formulas. For positive numbers such as we have here, there is the geometric mean (AB)1/2 and
the power mean (Ap + Bp)L/p. In generd, afunction A which takesin n real numbers and puts
out another is said to be an average if min(x,...,xn) % A(Xa,...,Xn) % max(x,...,xn) for adl n-tuples
of numbersxi ,...,Xn.

If the average of asat of n numbersis defined as the maximum dement of the set, and X isnot
a discrete space but a space of real numbers or vectors, then in many casesit is known that
K(an) isequa to aexp(L(x)n), where L(x) is cdled the "Liapunov exponent” of the dynamical
system (Callet and Eckmann, 1980). Often the Ligpunov exponent is independent of X, i.e.
L(X)=L. This exponent has the advantage of being easily computable. But the maximum function
is not ways areasonable choice of average: if oneisinterested in making a guess as to what
fn(x) is probably going to be, then one wants an average which (like, say, the arithmetic mean)
does not give undue emphasisto unlikdly situaions.
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To measure the sengitivity of a system, one merely averages the sengtivities at dl pointsx in
X. Here again, there is a choice to be made: what sort of average? But since we are speaking
conceptudly and not making explicit calculations, this need not bother us.

Next, let us consder aform of unpredictability which has not previoudy been identified:
dructurd sengtivity, or S-sensitivity.

Definition 4.2: The S-sengtivity K(an) of adynamicd sysem (f X) a apoint xinXis
defined asthe average over dl y sothat d(x,y)<aof  ds(xf(x)...fn(x),xf(x)...Mn(x)).

This measures how sengitively the structure of atrgectory depends oniitsinitid point.

Conversdly, one may aso consider reverse structurd sengitivity, or R.S.-sensitivity -- roughly,
how sengtively the point atrgjectory passes through at time n depends on the structure of the
trgectory up to that point. To be precise:

Definition 4.3: The R.S.-sengtivity K of adynamicd system (f,X) a apoint X in X is defined as
the average over dl y so that

ds(Xf(X)....n(x),xf(x)...fn(x))<a of d(fn(x),in(y)).
Thisisnot so Smilar to L-senstivity, but it has asmple intuitive interpretation: it measures how
well, from observing patterns in the behavior of a system, one can determine itsimmediately
future state.

Findly, let us define what might be called sructurd-structura sengtivity, or
S.S.-sensitivity.

Definition 4.4: The S.S.-sengtivity K(ah,m) of adynamicd sysem (f, X) a apoint x in X is
defined asthe average, over dl y so that

ds(xf(X)....n(x),xf(x)...fn(X))< g, of
ds(Xf(x)...fn(x), xf(x)...Mn(x)).

This measures how difficult it is to ascertain the future Sructure of the system from its past
structure.

What is essentid here isthat we are talking about the unpredictability of structure rather than
the unpredictability of specific vaues. It doesn't matter how different two States areif they lead
to smilar sructures, since (or so | will hypothesize) what the mind perceivesis structure.

Theoreticdly, to measuretheL.-, S.-, R.S.- or S.S.-sengtivity of asystem, one merdly

averages the respective sengtivities at al points x in X. But of course, the word "measure’ must
be taken with agrain of sdt.
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The metric d# is, in general, an uncomputable quantity. For practical purposes, we must work
instead with dc, the distance which consders only patterns in the computable set C. For example,
C could be the set of al n'th order Boolean patterns, as discussed at the end of Chapter 3. If one
replaces d« with dc in the above definitions, one obtainsL.-, S.-, R.S.- and S.S.-sengtivities
relativeto C.

Egtimation of the sengitivity of a system in these various senses could potentidly be quite
vauable. For ingtance, if asystem were highly sengtive to initid conditions, but not highly
gructurdly sengtive, then dthough one could not reasonably predict the exact future condition
of the system, one would be able to predict the genera structure of the future of the system. If a
system were highly sructuraly senstive but not highly S.S.-sengtive, then, dthough knowledge
of the present state would tell little about the future structure, knowledge of the past structure
would tdl alot. If asystem were highly R.S.-sengtive but not highly S.S-senstive, then by
studying the structure of a system one could reasonably predict the future structure but not the
exact future state. The precise relation between the various forms of unpredictability has yet to
be explored, but it seemslikdy that al these combinations are possible.

It seemsto methat the new sengtivity measures defined here possess a very direct rdation to
unpredictability asit occursin red socid, psychologica and biologicd Stuations -- they speak
of what studying a system, recognizing patternsin it, can tell about its future. L.-sengtivity, on
the other hand, has no such connection. L.-sengtivity -- in particular, the Ligpunov exponent -- is
profoundly incisve in the analyss of intricate feedback systems such as turbulent flow.
However, spesking philosophicaly, it seems that when studying a system containing feedback
on the leve of gructure aswel asthelevd of physica parameters, one should consider
unpredictability on the leve of sructure aswell asthe level of numerical parameters.

In conclusion, | would like to make the following conjecture: that when the logic rdaing sdf-
organization with unpredictability is untangled, it will turn out thet redl highly sdif-organizing
systems (society, the brain, the ecosystem, etc.) are highly Ligpunov sensitive, structuraly
sengtive and R.S.-sengitive, but are not nearly so highly S.S.-sendtive. That is roughly
gpeaking, it should turn out that by studying the structure of the past, one can tell something
about the structure of the future, but by tracking or attempting to predict specific events one will
get nowhere.

4.3 Intelligence as Flexible Optimization, Revisited

As above, let us consder dynamical systems on spaces SXE, where Sis the Sate space of a
system and E isthe sat of dtates of its environment. Such dynamica systems represent
coevolving systems and environments.

We shdl say that such adynamicad system containsan S.-sensitive environment to extent eif
itis S-sendtive to degree at least e for every sysem S; and so forth for L., R.S. and S.S--
sengtivity. One could modify this approach in severa ways, for ingance to read "for dmogt any
sysem S" but a this stlage such embdllishments seem unnecessary. This concept addresses the
"unpredictable conditions' part of our definition of intelligence: it says what it meansfor a
system/environment dynamic to present a system with unpredictable conditions.
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Next we must deal with "appropriateness’. Denote the appropriateness of astate St ina
dtuation B-1 by A(St,Et-1). | see no reason not to assume that the range of A isasubset of the
real number line. Some would say that A should measure the "surviva value' of the sysem date
in the environment; or, say, the amount of power that S obtains from the execution of agiven
action. In any case, what istrividly clear isthat the determination of gppropriate actions may be
understood as an optimization problem.

One might argue that it is unfair to assume that A is given; that each system may evolveits
own A over the course of its existence. But then one is faced with the question: what doesiit
mean for the system to act intelligently in the evolution of ameasure A? In the end, on some
level, one inevitably arrives a a vaue judgement.

Now we are ready to formulate the concept of intelligence in abstract terms, as "the ability to
maximize A under unpredictable conditions’. To be more precise, one might define a system to
possess S-intelligence with respect to A to degree %%0h%% if it has "the ability to maximize A
with accuracy g in proportion b of al environments with S-sensitivity h(ab,c)=abc and %% %%
is some measure of size, some norm. And, of course, one might definelL.-, R.S.- and S.S.-
intelligence with respect to A amilarly.

But there is a problem here. Some functions A may be trividly smpleto optimize. If A were
congtant then dl actions would be equdly appropriate in al stuations, and intelligence would be
amoot point. One may avoid this problem asfollows:

Definition 4.5: Reative to some computable set of patterns C, a system S possesses S--
intelligence to adegree equd to the maximum over dl A of the product [S.-intelligence of Swith
respect to A, relative to C]*[computational complexity of optimizing A]. L., R.S,, and SS--
inteligence may be defined smilarly.

This, findly, is our working definition of inteligence. In terms of Sternberg's triarchic theory,
it isessentidly acontextual definition. It characterizes the intelligence of a given entity in terms
of itsinteractions with its particular environment; and what is intdligent in one environment may
be unintdligent in another. Unfortunately, at present there is no gpparent means of estimating the
intelligence of any given entity according to this definition.

For amplicity's sake, in the following discussion | will often omit explicit reference to the
computable set C. However, it isessentid in order that intelligence be possible, and we will
return to it in thefina chapter. Anything that is done with d« can aso be done with dc.

| believe that high S.S. intelligenceis, in generd, impossible. The reason for thisisthat, as
will become clear in the Chapter 9, perception works by recognizing patterns, so that if patterns
in the past are no usein predicting patterns in the future, mind has no chance of predicting
anything. | suggest that intelligence works by exploiting the fact thet, while the environment is
highlyL., S- and R.S.-sengtive, it isnot highly S.S.-sensitive, so that pattern recognition does
have predictive vaue.
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The master network, described in Chapter 12, is a system S which isintended to produce a
decent gpproximation to appropriate behavior only in environments E for which the relevant
dynamica sysem on SXE isnot extremdy S.S.-sengtive -- and not eveninal such
environments. It is hypothesized to be a universd structure among a certain subset of L., S.- and
R.S.-intdligent systems, to be specified below. Thus, a more accurate title for this book would be
The Structure of Certain Ligpunov, Structural and Reverse Structurd Intelligent Systems.

In other words: roughly speaking, the main god of the following chaptersisto explore the
consequences of the contextua definition of inteligence just given -- to see what it implies about
the structure and experientia dynamics of intelligence. To be more precise about this, we sl
require a bit more formaiam.

4.4 Mind and Behavior

Let Shbe any system, as above. Let it and or denote the input to and output of Sat timet,
respectively. That is, o isthat part of S which, if it were changed, could in certain circumstances
cause an immediate changein E+1; and it isthat part of & which, if it were changed, could in
certain circumstances cause an immediate change in S+1.

Then we may define the behavioral structure of an entity S over theintervd (r,s) asthe fuzzy
st B[S,(ir,...,Is)] = {EM(ir,0r+1),EM(ir+1,0r+2),...,EM(is,0s+1),
S{EM(ir,0r+1),EM(ir+1,0r+2),...,EM(is,0s+1)] } . Thisis acomplete record of al the patternsin the
behavior of Sover theintervd (r,9).

Then what isamodd of S, on theinterva (r,9)? It isafunction Ms o that B[Ms;(ir,...,Is)] isas
closeto B(S;(ir,...,is)] as possible. In other words, agood modd isasmple function of which one
can say "If Sworked like this, it would have behaved very much the same asiit actudly did.”

In order to pecify what is meant by "close’, one might define the magnitude of afuzzy set Z,
%%%Z %%, as the sum over dl z of the degree to which z isan dement of z. Then, %%Y -Z%%
will be ameasure of the Sze of the totd difference between two fuzzy setsY and Z.

For ingtance, assume Ms is a Turing machine program; then the best mode of S might be
defined as the function Ms which minimized %oMs%* %%B[Ms; (ir,...,is)]-B[ S,(Ir,...,is)| %%, where
%M s% denotes the size of Ms(perhaps (Ms)=%L (Ms)%r).

In genera, one good way to go about finding modelsisto look for functions Y o that
%Y %* %% Y (Sip)),..., Y (Sia))]-[ S(0p+1),...,S(0q+1)] %% is smdl on someinterva (p,q). Such
functions -- smple models of the Structures of particular behaviors -- are the building blocks out
of which models are made. Combining various such functions can be a serious problem, so thet it
may not be easy to find the best mode, but it is awell-defined problem.

That takes care of behavior. Now, what about mind? Let us define the sructure St[S;(r,9)] of
asystem Sontheinterva (r,s) asthe set of patternsin the ordered st [S,...,Ss], where S, as
above, denotesthe state of S at timet. Thisisthe actud dructure of the system, as opposed to
B[S;(r,9)], whichisthe structure of the system's behavior. In the case where Sis a human or
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some other organism, through psychology we only have accessto B[S;(r,s)], but through biology
we can dso study S[S;(r,9)].

We may define amind as the structure of aninteligent system. This meansthat amind is not
aphyscd entity but rather a Platonic, mathematicd form: a system of functions. Mind is made
of patterns rather than particles.

The centrd clam of this book is that a certain structure, the master network, is part of the
mind of every inteligent entity. One might make this more precise in many ways. For ingtance,
define the general intelligence of a system to be the average of its R.S.-intdligence, its S--
intdlligence, and its L.-intelligence. Then | propose that:

Hypothesis 4.1: Thereisahigh correlation coefficient between 1) the degree with which the
master network is an dement of S[S;(r,9)], and 2) generd intelligence.

If thisistoo much to believe, the reader may prefer awesker satement:

Hypothesis4.2: If AismoreL.-, S.- and R.S-intdligentthan B, the master network is amost
never less prominent in A thanin B.

These hypotheses will be consdered again in Chapter 12, once the master network has been
described in detall.

5
Induction
5.0 Justifying Induction

After reading a certain amount of philosophy, it is easy to become confused as to exactly what
the problem of induction is. For our purposes, however, the problem of induction is very smple
and graightforward. Why isit justified for a system to assume that a pattern it has observed in its
environment or itsaf will continue to be a paitern in its environment or itsdf in the future?

Lebniz (1704) was the first mgjor philosopher to comprehend the seriousness of the problem
of induction. He did not presume to have solved it, but rather claimed to have aresearch
programme which would eventudly lead to its solution. His "Universd Characteridic” wasto be
asysemdization of dl human knowledge in mathematicad form, in such away that the various
possible answers to any given question could be assigned precise probabilities based on the
background knowledge available.

But athough Leibniz made important advances, Hume (1739) was the firg to give the

problem of induction its modern form. He gave a sequence of brilliant arguments to the effect
that human knowledge is, in fact, induction. For instance, he spent a greet dedl of effort

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 65

demondtrating thet the "fact” that one thing causes another, say that fire causes smoke, is
"known" to us only in the sense that we have seen it do so conagtently in the past, and therefore
assume it will continue to do o in the future. At the time thiswas an largely nove ingght into
the nature of human knowledge. The crux of his andysds of induction was his argument thet it is
fundamentdly unjudtifiable; however, without the conception of knowledge asinductive, his
clever ingght in this regard would have been meaningless.

After dl -- to summarize and smplify Humés argument -- how do we knowinduction works?
Either we know it by "divine revelaion” or "deduction” or some other principle which has
nothing to do with the specific properties of the real world, or we know it because of some
reasoning as to specific properties of the red world. If the latter, then how do we know these
specific properties will continue into the future? This assumption isitsaf an act of inductive
reasoning! So the two dternatives are; justify induction by some a priori principle unconnected
with the red world, or judtify induction by induction. And the latter isinadmissible, for it is
circular reasoning. So induction is just another form of dogmatism.

| take it for granted that Hume was right -- induction is unjudtifigble. But nonetheless, we
execute inductions every day. As| seeit, the practical problem of induction isthe problem of
coming up with asmple, generd, useful modd of the universe according to which induction is
indeed possible. Thisis quite distinct from the philosophica problem of induction. In solving the
practica problem, we are permitted to justify induction in terms of some principle divorced from
observable redity. The objective isto find the best way of doing so.

A SSIMPLE EXAMPLE

Consider the sequence 1010101010.... Given no background knowledge except that there will
indeed be anext term, and that it will be either O or 1, smple intuitive inductive reasoning
indicates that the next term should be a 1. One reasons. "Every time a0 has occurred, it has been
followed by a 1; hence with probability 1 thisOisfollowed by a1."

Similarly, given the sequence 010101001010101010... and the same minima background
information, one could reason: "Eight out of the nine times a 0 has occurred, it has been followed
by a 1; hence with probability 8/9 thiszero isfollowed by a1."

But this sort of reasoning is, of course, plagued by serious problems. It makes the implicit
assumption that the probability distribution of O'sand 1's will be the same in the future as it
was in the pagt. So it makes an inductive assumption, an assumption as to the "regularity” of the
world. Thereisno "apriori" reason that such assumptions should be justified -- but we
intuitively make them, and they seem to work fairly well.

INDUCTION AND DEDUCTION
Many people would be willing to accept logica deduction on faith, and judtify induction in
terms of deduction. Thiswould be one way of solving the practica problem of induction;

unfortunately, however, it doesn't seem to work. Even if one does takeit on faith that the
universe is condtituted so that the familiar rules of deductive logic are vaid, thereis no apparent

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 66

way of solving thepractical problem of induction. The rules of deductive logic give no reason to
assume that the regularities of the past will continue into the future.

In one sense thisis atechnica point, regarding the specific forms of deductive logic now
known. It might be argued that we smply don't know the true deductive logic, which would
judtify induction. But thet is not a very convincing argument; it is certainly not something on
which to base a theory of mind.

And modern physics has added a new wrinkle to this controversy. In 1936, Von Neumann and
Birkhoff proposed that a special non-classicd "quantum logic" isrequired for the andyss of
microscopic phenomena. Over the past few decades this suggestion has evolved into a
flourishing research programme. Mittelstaedt (1978) and other quantum logicians contend that
the choice of a deductive syssem must be made inductively, on the bas's of what seems to work
best for describing redlity -- that what we call logic is not absolute but rather a product of our
particular physica experience. If one accepts this postulate, then clearly thereisno point in
trying to judtify induction deductively, for thiswould be just as circular as judtifying induction
inductively.

5.1 The Tendency to Take Habits

The American philosopher Charles S. Peirce founded a vast philosophica system on the
principle of "the tendency to take habits™ By this he meant, roughly, the following:

Peirce's Principle: Unlessrestrained by the extension of another habit, a habit will tend to
extend itsdlf.

Here "extend" is taken to refer to both space and time, and "habit" is essentidly synonymous
with "pattern.” In away thisis adistant reative of Newton's First Law of Motion: unless
somehow obstructed, an object will travel in asraight line,

Peirce never serioudy sought a proof of this principle; he considered it primary and
irreducible. He did, however, provide an amusing cosmogonic argument, which begins with the
assumption thet, out of the primordia void, various habits emerged at random, with extremely
amdl intengties. Once the tendency to take habits comes into existence to an indefinitely smdl
degree, he argued, then by the tendency to take habits the particular habit which is the tendency
to take habits is extended -- et cetera. Hence the tendency to take habits is strengthened, and
hence more and more habits which emerge to aminiscule degree will be extended, and this
condtitutes an extension of the tendency to take habits, and hence the tendency to take habits will
be further extended -- et cetera.

Clearly, this sort of reasoning -- though intriguing -- contains al sorts of hidden assumptions;
and there is not much point in debating whether or not itis redlly a"judtification” of Peirces
principle. It is best to take the smpler path and assume Peirce's principle outright.

| will assume, firg of dl, that "a pattern tends to extend itsalf through time". This does not
imply thet all patterns continue indefinitely through time; thisis obvioudy absurd. Merdly a
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tendency is podted: merdly that, given that a pattern X has occurred in the past, the probability
that X occursin the future is grester than it would be if the events a each time were determined
with no reference whatsoever to previous events. Roughly spesking, thisis equivaent to the
hypothesis that the environment is self-organizing.

Clearly, this assumption requires that the world, consdered as a dynamica system, is not
highly S.S.-sengtive. If the world were highly S.S.-sengitive, then one would need essentidly
complete knowledge regarding the structure of the past world in order to predict the structure of
the future world. But if the world possessed the tendency to take habits, then there would be a
good chance the patterns one recognized would be continued to the future, thus limiting the
possible degree of S.S.-sengtivity. This relaionship can be spelled out in a precise inequdity;
but there seemslittle point. The basic ideashould beclear.  Conversdly, one might wonder:
doeslow S.S.-sengtivity inherently imply low tendency to take habits? It seems not. After all,
low S.S.-sengitivity impliesthat it is possible to compute future structure from past structure, not
that future structure is Smilar to past structure.

It may be worth phrasing this distinction more precisaly. The structure of adynamica system
over animmediatdy past interva of time (the "past structure') does not, in generd, determine
the Structure of the sysem over an immediatdy future interval of time (the "future structure”).

But the past structure does place certain congraints upon the future structure; it enforces a
certain probability distribution on the set of dl future structures. That isto say, future dructureis
dependent upon past structure according to some stochastic function F. Then, dl low S.S--
sengtivity saysisthat, if X and Y are close, F(X) and FK(Y) are reasonably close (here X and Y
are structures, i.e. sets of patterns). But what the tendency to take habits saysisthat X and F(X)
are reasonably close. From thisit is apparent that the tendency to take habitsimplieslow S.S--
sengtivity, but not vice-versa

Let usreturn to our previous example. In the case of 0101010101010..., the tendency to take
habits trandates the assumption that the next term will be a0 into the assumption that the pattern
x=y*z will be continued, where x is the sequence involved, y isthe function f(A)=AAA...A
which juxtgposes A ntimes, * isfunction evaduation, and z=01. Clearly %y%, %z% and C(y,z)
arerather small, so that thiswill be a pattern in reasonably short sequences of the form
0101010101010.... It is also important to note that, in the case 0101010010101010..., the most
natura gpplication of the tendency to take habits involves the same'y and z as above, but in this
case as an approximate pattern. One might consder d(y* z,x)=1, since y*z may be changed into
X by one insertion.

| have not yet been any more specific than Peirce as to what "the tendencyto take habits'
actudly is. Clearly, if one saw the sequence 0101010101010... in redity, one might or might not
assume that, by induction, the next term was a 1. It would depend on context. For instance, if one
were receiving such numbers as output from a computer program, and the last twelve outputs one
had received were al either 0101010101000 or 1010101010111, then having seen 01010101010
one would probably assume the next term was going to be a 0. Obvioudy, thisis aso induction;
oneis merdly inducing relative to alarger data set. What the tendency to take habits, properly
formulated, should tell usisthat given no other relevant knowledge, one should assume a
given pattern will continue, because there is a certain tendency for patterns to continue, and if
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one does not assume this there is nothing to do but assume a uniform digtribution on the set of
possible outcomes. When two patterns arein competition -- when they cannot both continue --
then one must make a decison as to which one to assume will continue.

This example might be taken to suggest that the pattern based on the largest data set is dways
the best bet. But thisis not the case. For what if one's computer outputs the following five
sequences. 9834750940, 2345848530, 0000000000, 9875473890, 1010101010. Then when one
sees for the sixth output 010101010, what is one to assume will be the last term? Does one
follow the pattern extending over al five of the prior inputs, that dl sequencesend in 0?Or is
oneto obey theinterna logic of the sequence, bolstered by the fact that the fifth sequence, with a
very smilar sructure, and the third sequence, with afairly smilar structure, were each continued
in away which obeyed ther internal logic? According to my intuition, thisis a borderline case.

One could concoct a smilar example in which the clear best choice is to obey the structure of
the individua sequence. Indeed, if one smply replaced the fina digit of the first sequence with a
1, then ending in O might <till be an gpproximate pattern, but according to my intuition the best
guess for the next term of the sixth sequence would definitely be 1.

If nothing else, the examples of the previous paragraph demongtrate that the choice of pattern
isamatter of intuition. The tendency to take habits is a powerful, but it doesn't tell you what to
assume when experience or logic tells you that two patterns, both historically prominent, cannot
both occur. And the case of two contradictory patternsis ardatively smple one in redity, every
mind has recognized a huge set of patterns, each one contradicting numerous others.

In order to resolve this dilemma, | will propose a strengthening of Peirce's formulation of the
tendency to take habits. | suggest that, when it possesses little or no information indicating the
contrary, an intelligence should assume that the most intense of agroup of contradictory patterns
will continue. This strategy can only work, of coursg, if the universe operates according to the

following specid principle:

Strengthened Peirce s Principle: A pattern tendsto continue,  and the more intense a pattern
it is, the more likdly it isto continue.

This principle does not say how much more likely. But in generd, a mind may want to
consider the probability of agiven pattern occurring in the future. In that case, it would need to
know the exact nature of the relation between intensity and chance of continuance. One might
think that this relation could be determined by induction, but this would lead to circular
reasoning, for the execution of this induction would require some assumption as to the nature of
thisinduction. At some level one must make an apriori assumption.

In sum: | have not attempted to "justify” induction; | have rather placed a condition on the
universe under which a certain form of induction will generdly be effective. This condition -- the
strengthened Peirce's principle -- rules out high S.S.-sengtivity but not highL.- S.- and R.S.-
sengtivity, and it isnot implied by low S.S.-senstivity. It is cdlear that, in a universe obeying the
strengthened Peirce's principle, a system can achieve a degree of intelligence by recognizing
patterns and assuming thet they will continue.
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Thisidea makes sense no matter how complexity is defined; it relies soldy on the definition of
pattern. But if one restricts attention to Turing machines, and considers complexity to mean KCS
complexity, then the present gpproach to induction becomes extremely similar to the "classcad”
proposa of Solomonoff (1964). His paper, "A Forma Theory of Induction,” was one of the three
origind sources of the KCS complexity. His essentia idea was a mathematical form of Occam's
razor: the smplest explanation isthe one most likely to be correct. He took this as a given,
defined an explanation of abinary sequence as a program computing it, and went on to construct
the KCS complexity as a measure of amplicity.

5.2 Toward A General Induction Algorithm

The strengthened Peirce's principle is only abeginning. It is abasic philosophica assumption
which ensures the possibility of intelligence through pattern recognition. All the stlandard
mathematical methods for predicting the future are based on probability theory. In this section |
will show that it isindeed possible to combine prediction based on pattern with prediction based
on probability. Mot of the ideas here are completely straightforward, and the reader who prefers
to avoid mathematica formaism will lose little by skimming over this section.

From the abstract philosophica point of view, this approach may be controversd; it assumes
that elementary probability theory works, and probability is a troublesome concept. This
difficulty will be discussed in Chapter 9, in a different context. For now, let us Smply goply the
theory of probability without worrying about justifications.

Let P(X) denote the probability that the proposition X istrue; let P(X%E) denote the
probability that X istrue given that the propostion E istrue. Recdl that POX%E)=P(XE)/P(E),
unless P(E)=0. Let us consider events Yi of the form "Paitern B is present in the environment to
intengty KI over time period(t,v)", wherej and K are integers, and set p=P(Yi). If therearen
patterns and O%K <M, then there will be N=nM events Yi. Essentidly, the task of making a
coherent modd may be summarized as follows. Where t denotes the present time, let Qs denote
the proposition "Patterns Qs1, Qs,..., Qs have been observed during the interva [t-sit] with
respective intensties Ksi,...,Ksn". The question is: what is P(Yi%Q)s), for each s? Strictly
gpesking, thisis a different problem for each s. However, the knowledge generated in solving it
for, say, s=1000, would obvioudy be useful in solving it for s=1100, 2000, or 10000. In generd,
the larger sis, the harder the problem is, since there will be more Q.

The estimation of the probabilities P(Yi%Qs) isavery difficult problem. Probably there will
aways be a need for rough heurigtics. But Hill, amore detailed analysis can lend some insight
into what isinvolved. { Qs} isthe set of patterns observed inthetimeinterva [t-st]. Let us
assume thet al the possible combinations of dements of { Qs} have been listed in some specified
order, and that { Qsx.1), Qsk2),...} refersto the k'th one. Then for any v, and any u between s+v
and t, we may introduce a set of propositions, { Rwk}, which includes al propostions of the form
"Qsik.1) and Qsk,2) and ... have been observed during (u-v,u) with respective intensties Ksj,1),
Ksk2),...." And, findly, we may define Ps(Ruk) as the result of applying Algorithm 3.1 to the sat
of patterns referred to by Ruk [in the notation of that agorithm, let Qs«.1=(y1,21), €tc.].
According to the strengthened Peirce's principle, thisindicates how likely it isfor the k'th
conjunction of patternsto occur.
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So, in this framework, estimating P(Yi%Qs) comes down to fir st using the Ps(Ruwk) to estimate
aset of most likely future scenarios, a set of subsets of { Qs} which are intense enough and
mutualy congstent enough to be plausible; and second, using the Ps(Ruw«) to estimate the
P(Yi%Qs) for those Qs in this future scenario.

The second part, estimating the P(Yi%Qs), isrelatively tractable; it doesn't require dl the
Ps(Ruk), but only the rdatively miniscule subset involving conjunctions of the form BQ1, where
Qi isan dement of some Qg and P, is the pattern to which the proposition Yi refers. In practice an
intelligent system would probably have to forego the testing of dl the Yi, and for those Yi which
it selected to test it would have to ignore some of the conjunctions BQr. For those Yi and Qs
sdlected, it would smply have to use the formula P(Yi%Qs )=P(YiQs)/P(Qs).

Unfortunatdly, the task of choosing aset of most likely futures, isfar, far less pdatable. Thisis
avery difficult optimization problem, and what'sworse, in generd it refersto the entire set of
Ps(Rwk). The array { Rwi} is 0 large that no conceivable intelligence could ever compute it for a
gtuation involving aredigtic number of patterns. So in order for intdligent prediction to be
possible, some sort of very rough approximation method is required.

Let's assume -- for reasons that will become clear in later chapters -- that certain patternsin Qs
have been labeled asimportant. By what process doesn't matter right now. Define the
prominence of a pattern asthe product of its intengty with its importance. Then one rough
approximation agorithm is asfollows. Consder perhaps seven different valuesof s-- e.g. a
second, aminute, an hour, aday, aweek, ayear, alifetime -- and seven different vaues of v. For
each of these values of s, sart with, say, the seven most prominent patterns, and consider dl the
various combinations of them. Estimate for each of these 896 combinations the gppropriate
average over all u of Ps(Ruwk), where v runs through al saven values. For each v retain the saven
which yied the highest numbers (there could be some repetition in this set if the same pattern
were prominent on two different time scaes). Then, for each v, for each of these seven patterns
P, consder dl the combinations of P with the Sx next most prominent patternsin Qs (where s
corresponds to the time scale on which P was sdlected as prominent). For each of these
combinations, compute the appropriate average over dl u of Ps(Ruwk) (where v correspondsto the
time scale according to which the initid eement of Rwk was retained). Sdlect the seven which
yield the highest numbers. Then, for each v, for each of these seven patterns P, consder dl the
combinations of P with the next most prominent patternsin Qs....

Obvioudy, the numbers could be tinkered with. Perhaps they could be selected more
intelligently. But the basic idea should be clear: with luck, you can accr ete areasonably likely
projection on any future time scde v by starting with an intense, important pattern and
progressively adding less and less intense and important patterns onto it. At each stage a number
of possible additions are consdered, and those which contradict least are retained. Thisisavery
crude methodology. It relies essentialy on the precept that more intense habits can be expected
to continue with gregter certainty -- without this assumption, one might aswell sart with
randomly selected "important” patterns as with intense ones.

Themord of dl thisisthat if the philosophical problem of induction is unsolvable, the
general practical problem of induction is formidable. By proposing the tendency to take habits
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asafundamentd law, we have andyzed induction in terms of pattern recognition. By proposing
that more intense patterns have more propengty to continue we have given aclue asto how to go
about resolving the contradictory predictions which the tendency to take habits inevitably gives
riseto. But this is nothing more than agenera precept, a hint as to how to go about doing things:
even if, on average, the more intense of a set of contradictory patterns prevails, it isfolly to
invariably assume that the more intense pattern one has perceived will prevail. To go beyond
mere philosophica maxims requires agenera framework for talking about the probabilities of
various combinations of patterns, and this leadsinto a maze of setsand indices. It is extremey
difficult to use past experience to tdll which of two contradictory patterns will prevail.

But thistask is necessary for intdligence: what we are talking about is no less than building a
plausible modd of the future on the basis of the past. Hopefully the homeliness of the necessary
formalism does not obscure the very basic nature of the questions being addressed. Although
induction is generaly recognized to be essentid to mentality, there has been very little work
done on the generd practica problem of induction. Philosophers have tird esdy debatedthe fine
points of arguments for and againgt the judtifiability and possibility of induction; and computer
scientists have made a great dedl of progress studying induction in limited contexts (Blum and
Blum, 1975; Daey and Smith, 1986). But, cumbersome as the ideas of this section imply a
hybrid pattern-theoretic/probabilistic method of predicting, on the basis of patterns recognized in
the world in the pagt, the probability that a given pattern X will occur with intensity K in the
future on atime scale [t,t+v], wheret isthe present.

5.3 Induction, Probability, and Inteligence

In conclusion, let us now return to the question of intelligence. Assuming that the world is
unpredictable and yet possesses the tendency to take habits to a Sgnificant degree, let us ask:
how should a system act in order to gpproximately maximize the given "gppropriateness'
function A? In other words, let us ask the Kantian question: how isintelligence possble? One
reasonable answer is, by repeeting the following schematic steps:

1. Recognize patterns in the environment

2. Congtruct a mode of what the future will be like, based on reasoning by induction, assuming
the strengthened Peirce's principle and using probability theory. That is, wheret denotes the
present time, congtruct a set of statements of the form "according to my best guess, the
probakility that the environment will exhibit pattern X, with intengty K, over timeinterva

[t.t+v], isP(X,K,v)", where P(X,K,v) is as high as possible.

3. Estimate what srategy will maximize A according to such an assumption.

In later chaptersit will be proposed that this three-step processis applied recursively -- that each
of the three steps will often involve the gpplication of dl three steps to certain subproblems. And
the process will be embedded in alarger, subtler web of structures and processes. But
nonethel ess, these three steps form the core about which the ideas of the following chapters will
be arranged.
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6

Analogy
6.0 The Structure-Mapping Theory of Analogy

Induction, as we have andyzed it, requires a store of patterns on which to operate. We have
not said how these patterns are to be obtained. Any genera globa optimization agorithm could
be gpplied to the problem of recognizing patterns in an environment. But pattern recognition isa
difficult problem, and a mind needs rapid, reasonably accurate solutions. Not just any agorithm
will do.

One might propose to determine, by induction, an effective pattern recognition agorithm. But
athough this might be possible, it would be very dow. Such a process probably occurred during
the evolution of intelligent species, but within the lifegpan of one organiam thereis Smply not
time.

In Chapter 9, | will propose that intelligent entities solve pattern recognition problemswith a
"perceptud hierarchy™ tha goplies the multilevel philosophy of globa optimization sketched in
Chapter 2. Among other things, this perceptua hierarchy makes continua use of two processes.
andogy and deduction. And deduction, it will be argued in Chapter 8, is dso essentialy
dependent on analogy. Hence analogical reasoning is an essentid part of the picture of
intelligence drawn & the end of the previous chapter.

WHAT ISANALOGY

What | mean by andogy is, roughly, reasoning of the form "A issmilar to B in respect X,
therefore A isdso amilar to B in respect Y." Aswith induction, it is difficult to say exactly why
andogy works aswdll asit does. But there is no disputing its effectiveness. Bronowski (1956)
has driven the point home so forcefully that an extended quote seems gppropriate:

Man has only one means to discovery, and that is to find likeness between things. To
him, two trees are like two shouts and like two parents, and on thislikeness he has built all
mathematics. A lizard islike abat and like aman, and on such likenesses he has built the theory
of evolution and dl biology. A gas behaveslike ajodtle of billiard bals,and on this and kindred
likenesses rests much of our atomic picture of matter.

In looking for inteligibility in the world, we look for unity; and we find this (in the arts
aswell asin science) in its unexpected likenesses. Thisindeed is man's cregtive gift, to find or
make a likeness where none was seen before -- alikeness between mass and energy, alink
between time and space, an echo of al our fearsin the passon of Othello.

So, when we say that we can explain a process, we mean that we have mapped it in the
likeness of another process which we know to work. We say that a metal crystal stretches
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because its layers dide over one another like cards in a pack, and then that some polyester yarns
gretch and harden like ametd crystd. That is, we take from the world round us afew modes of
structure and process (the particle, the wave, and so on), and when we research into nature, we

try to fit her with these models.

Even more intriguingly, Bronowski goes on to relate analogy with structure:

Y et one powerful procedure in research, we know, is to break down complex events into
ampler parts. Are we not looking for the understanding of nature in these? When we probe
below the surface of things, are we not trying, step by step, to reach her ultimate and
fundamenta congtituents?

We do indeed find it helpful to work piecemed. We take a sequence of eventsor an
assembly to pieces. we look for the stepsin a chemica reaction, we carve up the study of an
animal into organs and cells and smdler unitswithin acdl. Thisis our atomic approach, which
triesawaysto seein the variety of nature different assemblies from afew basic units. Our search
isfor smplicity, in that the digtinct units shal be few, and dl units of one kind identical.

And what distinguishes one assembly of these units from another? the e ephant from the
giraffe, or the right-handed molecule of sugar from the left- handed? The differenceisin the
organization of the unitsinto the whole; the difference isin the structure. And the likenesses for
which we look are also likenesses of structure,

Thisisthe true purpose of the andytic method in science: to shift our gaze from the thing
or event to its structure. We understand a process, we explain it, when we lay bareinit a
gructure which is like one we have met e sewhere.

What Bronowski observed in the history and psychology of science, Gentner and Gentner
(1983) have phrased in amore precise and genera way. They speak of the " Generative Andogy
Hypothess' -- the hypothesis that analogies are used in generating inferences. And in order to
test this hypothesis, they setforth a specific theoretical framework for analogica processing,
cdled "structure-mapping.” According to this framework, andogical reasoning is concerned with
deriving statements about atar get domain T from statements about a base domain B. Each
domain is understood to consst of a number of "nodes’ and a collection of relations between
these nodes. Essentially, a node may be any sort of entity -- an object, acolor, etc. A structure-
mapping begins with a relaion which takes certain base nodes into certain target nodes: if the
source nodes are (ba,...,bn) and the target nodes are (1a,...,tn), it isamap M(bi)=tj, where i ranges
over some subset of (1,...,n). Andlogy occurs when it is assumed that arelation which holds
between bi and b« also holds between M(bi) and M (bx).

The theory of structure-mapping anadogy Sates that reasoning of this form is both common
and useful. This hypothes's has been verified empiricaly -- eg. by studying the way people
reason about eectricity by analogy to water and other familiar "base’ domains. Furthermore, the
evidence indicates that, as Gentner and Gentner put it, relations "are more likely to be imported
into the target if they belong to a system of coherent, mutualy congtraining relationships, the
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others of which map into the target.” If ardation is part of alarger pattern of relationships which
have led to useful andogies, people estimate that it islikdy to lead to auseful andogy.

The structure-mapping theory of analogy -- sketched by Bronowski and many others and
formdized by Gentner and Gentner -- clearly captures the essence of andogicd reasoning. But it
isnot sufficiently explanatory -- it does not tell us, except in avery sketchy way, why certain
relations are better candidates for analogy than others. One may gpproach this difficult problem
by augmenting the structure-mapping concept with a more findy-grained pattern-theoretic
approach.

INDUCTION, DEDUCTION, ANALOGY

Peirce proclaimed the tendency to take habits to be the "one law of mind", and he divided this
law into three parts. deduction, induction, and abduction or analogy. The approach of computer
science and mathematica logic, on the other hand, is to take deductive reasoning as primary, and
then analyze induction and anaogy as deviations from deduction. The subtext is that deduction,
being infalible, isthe best of the three. The present approach is closer to Peirce than it isto the
standard contemporary point of view. When speaking in terms of pattern, induction and anaogy
are more e ementary than deduction. And | will argue that deduction cannot be understood
except in the context of a comprehensive understanding of induction and anaogy.

STRUCTURAL SIMILARITY

Asin Chapter 3, define the distance between two sequencesf and g as d«(f,g)=%(P(f)-
P(9))U(P(g)-P(f)%x. And define the approximation to d#(f,g) with respect to a given st of
functions S as

ds(f,g)=%[ (SY6P(f))- (S¥P(g))]U[ (S¥eP(q))- (S¥6P(f))] %« This definition is the key to our
andyss of andogy.

A metric is conventiondly defined as a function d which satisfies the following axioms.
1) d(f,g) % d(g,h) + d(f,h)
2) d(f,g) = d(gf)
3) d(f,g) % 0
4) d(f,g)=0if and only if f=g.
Note that d« is not ametric, because it would be possible for P(f) to equa P(g) evenif f and g
were nonidentica. And it would not be wise to consider equivalence classes such that f and g are

inthe same dassif and only if d«(f,g)=0, because even if d«(f,g)=0, there might exist some h
such that d«(Em(f,h),Em(g,h)) is nonzero. That is, just because d«(f,g)=0, f and g are not for dl
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practical purposes equivaent. And the same argument holds for ds -- for ds(f,g)=0 does not in
generd imply ds(Em(f,h),Em(g,h)), and hence thereislittle sensein identifyingf and g. A
function d which satisfies the firgt three axioms given above might be caled a pseudometric; that
ishow d# and ds should be considered.

TRANSITIVE REASONING

To understand the significance of this pseudometric, let us pause to consder a"'toy verson™ of
andogy that might be cdled trangtive reasoning. Namely, if we reason that "f is Smilar to g, and
gissmilartoh, sof isamilar to h," then we are reasoning that "d(f,g) issmdl, and d(g,h) is
amdl, so d(f,h) issmdl.” Obvioudy, the accuracy of this reasoning is circumstance- dependent.
Spesking intuitively, in the following Stuation it works very well:

gf
h
But, of course, one may also concoct an opposite case:
f gh

Since our measure of distance, d#, satifiesthe triangle inequdity, it is dways the case that
d«(f,h) % d«(g,h) + d«(f,g). This puts a theoretica bound on thepossible error of the associated
form of trangitive reasoning. In actua circumstances where trangitive reasoning is utilized, some
gpproximation to dx will usualy be assumed, and thus the relevant observation is that ds(f,h) %
ds(g,h) + ds(f,g) for any S. The fact that ds(f,h) is small, however, may say as much about S as
about the relation between f and h. The triangle inequdlity is merely the find phase of trangtive
reasoning; equally essentid isto the processis the pattern recognition involved in gpproximeating
(073

6.1 A Typology of Analogy

Anaogy isfar more powerful than trangtive reasoning; nonetheless, according to the present
andydsit is nothing more than a subtler way of manipulating the pettern distance. | will
introduce three forms of analogica reasoning -- structural analogy, modeling, and contextual
analogy -- and propose a unified structure for andogical reasoning which encompasses dl of
them. It is perhaps not obvious that al conceivable cases of andogica reasoning are included in
thisformulation -- but | have been unable to find a counterexample. What | am atempting hereis
vaguely smilar to Aristotles list of the seventeen forms of syllogigtic logic. He did not prove his
lis exhaudtive, but it nonetheless served well for along time.

STRUCTURAL ANALOGY

Consder the following gpproach to recognizing petterns in an entity x.
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1. ds(x%,X) issmadl.
2. (y,2) is, gpproximately, a pattern in x%.
3. Thus something near (y,2) is, gpproximately, a patternin x.

The judtification of the processis obvious: ds is an gpproximation of d+, and d« isameasure of
difference in pattern. In generd, if d«(A,B) issmall, then most of the patternsin A aredso
patternsin B, and vice versa. And as this distance gets smaller, the reasoning gets more certain.

Thisprocess | will cdl structural analogy; it isthe smplest of the three forms. Quite Smply,
X isgtructurdly anadogous to x% if x and x% have smilar structure. Roughly spesking,
gructural analogy is the assumption that if x and x% have some smilar sructures, then they
have other smilar sructures.

For alessforma example, consider the following experiment, described by Ornstein (1986,
p.159):

A man comesin to give alecture to students. Afterward, the students are told that he is
either a student or a professor and are asked to rate the lecture. Not surprisingly, they rate the
lecture as being better if aprofessor has given it, but what is surprising isthet they rate the
lecturerastaller if he wasidentified as a professor.

It would appear that what is happening here is an unconscious, erroneous structural analogy. The
Sudents observe that the lecturer has something in common with the loose collection of patterns
that might be called "high tatus’ or "superiority”. Therefore they assume, unconscioudy, that he
islikely to have other patternsin common with this same collection. This assumption is not
overpoweringly strong, but it is enough to bias their perceptions.

MODELING

Let us begin with arough example. Suppose one seeks a method of making housing less
expengve (i.e. one seeks a certain pattern in the domain of knowledge about housing, which
domain we may cal x). Then one might decide to reason by analogy to the automobile industry.
Automobiles bear some similarity to houses -- both are designed to contain humans, both are
manufactured in great number throughout the devel oped world, both represent fairly magor
invesments for the average person, etc. There are obvioudy sgnificant differences dso, but the
association is by no means arbitrary. One might reasonably ask: how does one make inexpensive
cars?

In reasoning thus, one would be beginning (Step 1 in the process of structural andogy) with
the observation that the entity "housing” isin some measure Smilar to the entity "cars'. Inthe
notation given above, if the domain of knowledge about housing is x, then the domain of
knowledge about carsis x%.
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Cars, one might then observe, are much less expensive when mass- produced than when
custom-built and custom-designed. And cars are being made chegper and cheaper by more and
more efficient methods of mass production. Thisis Step 2 in the process of structura andogy:
oneisrecognizing apaterninx%. Findly, one might map this reasoning back to the domain
of houses, searching in the vicinity of "cars are made less expensive through mass production”
and finding "houses are made less expensive through mass production” (Step 3). The vdidity of
this hypothesis could then be tested by exploring whether it isin fact possible to make the
production of housing less expensve through mass production -- by exploring the feasihility of
trucking or ar-lifting a pre-assembled house to a given location, et cetera

Thismay be interpreted as an illugtration of structura analogy: the structure of the housing
industry is somewhat Smilar to the Structure of the auto industry, so further smilarities are
assumed to exigt. But it dso suggests a dightly different form of andogica reasoning, which |
ghdl cdl modding. For in this example the relation between x% and x was exactly the same as
the rdation between (y,z) and the pattern findly found in x. That is, if we define afunction f by
f(g(cars))= g(housing), then f(inexpensive cars) = inexpensive housing, and adso f(mass-
produced cars) = mass-produced housing. This suggests thefollowing generd form of reasoning:

1. ds(f(x),x) issmdl.
2. (y,2) is, approximately, a pattern in f(x).

3. Thus something near (-1(y),f-1(2)) is, gpproximately, a patternin x.

In generd, -1 may be multivalued; it may be ardation rather than afunction. This posesa
moderate computationd difficulty (Grandy, 1985), which may be dedlt with by maximum-
entropy methods like those discussed in Chapter 9.

BRAINSTORMING

Why would modeling andogy work? If f(w) isdways sructurdly smilar to w, for any w,
thenitisjust agoecid form of sructurd anadogy, and it is justified wherever structura andogy
isjudtified. Otherwise, however, it isaquestion of whether the function f "preserves patterns'.
There might be some functions f for which Steps 2 and 3 taken exclusively of Step 1 would be a
plausible form of reasoning. In such casesit would follow from "(y,z) isapaternin X" that
"something near (f(y),f(2)) is probably a pattern in f(x)." But, on the other hand, there are
certainly many functions which do not preserve patternsin this sense.

In some cases, the choice of afunction f which does not generdly tend to preserve patterns
may be highly valuable. Thisis oneway of understanding the process of "brainsgorming”: one
trandforms a problem x into a context f(x) which isfarly unlikely to have much to do with the
origina context, seeks an answer in this context, and then tries to map the answer back. For
ingance, in thinking about international combat, one might say to onesdf "now, pretend each
country isalittle boy, and the various parties of the war are just little boys squabbling.” In this
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case we would be sdlecting f so that f(g(nations))=g(boys). L&t us assume that one has mapped
the particularities of awar into the particularities of a squabble, and then thought of away to
resolve the squabble. Then in order to get anything useful one would have to map one's answer
back into the domain of nations, i.e. one would have to take f-1 of one's answer. In this case it
would seem that f is only moderately patternpreserving, and such an experiment would have a
fair but not excellent chance of yielding a relevant suggestion.

Mathematicdly this form of reasoning may be viewed as the attempt to find a function f,
mapping agiven domain D into agiven range R, that is gpproximately "topologicaly
semiconjugae’ to the structure operator S(x). That is, f maps D to R and, idedlly,
S(f(x))=f(S(x)). Often R may be understood as amodd of D, in the sense that each dement x of
D may be associated with an dement of R in such away that the relation of x to other elementsy
of D issmilar to the relation of f(x) to the dementsf(y) of R.

CONTEXTUAL ANALOGY

Only one form of andogy remains. What if x and X% have no inherent structura
commonadlity, but are related to other patternsin smilar ways? One might still reason
andogicdly that x and x% are amilar. Or one might reason andogicaly from the observation
that x and x% are related to different paternsin smilar ways. Let uscdl this contextual
analogy. Such reasoning is not encompassed under structural andogy or modding -- anew
formulaisrequired. To say that x and x% are related to other patternsin Smilar ways, isto say
that ds(Em(x%,w%),Em(x,w)) is small. Thus contextuad anaogy rests on those aspects of x
which do not manifest themsdvesin the interna structure of X, but which nonetheless emerge
when x is conjoined with other entities.

For instance, suppose w=w% is a codebook which contains severd different codes, including
Code A and Code B. Suppose x isamessagein Code A, and x% isamessagein Code B -- and
suppose x and x% both convey the same message. Then x and x% may not gppear Smilar; they
may have no virtudly no patternsin common.

To seethis, observe that the meaning conveyed by a coded message, say X, isnot generdly a
pattern in that coded message. If the meaning of the message x is called Mx, and the function
(contained in the codebook) which trandates x into Mx is caled F, then we may write F(X)=Mx.
But (F,Mx) isapatternin X only if a80F% + b%Mx% + cC(F,Mx) < %x%, and thisisnot &t al
inevitable. Perhaps %Mx% is less than %x%, but if the codebook islarge or difficult to use, then
%F% or C(F,Mx) may be sizeable. And the same could be said for x%.

So in thisexample, d«(x,x%) may be smal, but what about d«{Em(x%,w), Em(x,w)]? Clearly,
Mx isan dement of Em(x%,w), and Mxx is an dement of Em(x%,w), so thet if Mx and Mxw» are
equd, this distance is small. Contextua anaogy would occur, for instance, if one reasoned that,
because the messages x and x% have smilar meanings, they may have come from the same

person.

Thisexampleisnot a dl atificid; in fact it may turn out to be centra to mental function. The
mind works in terms of symbol systems, which may be considered as highly sophidticated
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codebooks. Street signs are coded messages, as are sentences. Suppose one reasons that sentence
A has asmilar meaning to sentence B, another, and therefore that the person uttering sentence A
may have a smilar attitude to the person uttering sentence B. Thisis contextud anaogy, because
the meaning of a sentence is not actudly a pattern in that sentence, but rather a pattern emergent
between that sentence and the "codebook” of language.

A GENERAL ANALOGY ALGORITHM

One may incorporate dl three forms of andogy in one genera process.
1. ds(St(f(x%)%owW%)- St(W%o),St(x%w)- St(w)) issmadl.
2. (y,2) is, gpproximately, an dement of St(f(x%)%v%)-SX(v%0).
3. Thus something near (-1(y),f-1(2)) is, approximatdy, an eement of
S(x%v)-S(v), where v=f-1(v%) is perhaps a good guess.

In the case of structurd anaogy, f isthe identity mapping, and w%, v and v% are the empty
s, but x% is different from x.

In the case of modding, x=x% and w%, v and v% are the empty set, but  is not the identity
mapping.

In the case of contextuad andogy, f isthe identity mapping but w% is not the empty paitern; v
and v% may or may not be the empty set. If v and v% are the empty set, then one has the form of
reasoning "X and x% have amilar rlationsto y and y% respectively; therefore x and x% may be
gructurdly smilar.” And if neither v nor v% is the empty set, one has the form of reasoning "x
and x% have smilar rdationsto y and y%; therefore they may dso have smilar rdaionsto v
andvoo."

The reason for expressions such as St(x%ov)- St(v) isto specify that, for instance, either
patternsin x or patternsin Em(X,v) are desirable, but not patternsin v done.

The generd dgorithm -- which | will cal, smply, analogy -- hence includes the three forms
of analogy discussed above. It dso encompasses hybrid forms. For instance, if x=x%, but f is not
the identity and neither v, v9% nor w% are the empty set, then one is mapping X to amodd range
viaf and executing contextua rather than structurd andogy in thisrange.

This generd idea could be implemented in many different ways. For instance, consder the
following hybridization of sructura and modding analogy:

1. ds(x%,X) issmadl.

2. Sdect (y,2) which is, approximately, a pattern in f(x).

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE

3. Check if something near (f-1(y),f-1(2)) is, gpproximately, a pattern in x%.

If this doesn't turn out to be the case, and f is reasonably near the identity, then check if
something neer (y,2) is, aoproximately, a pattern in x%.

In thisimplementation, modeling is considered partly as atool for searching the space near (y,2).

Each step of the process of andogy involves asgnificant effort: fird, to pick x% or f; second,
to recognize a pattern in f(x%); third, searching in a certain vicinity for apaitern in x, and fourth,
inverting f. It would be possible to execute the latter three tasks by some generd optimization
agorithm, and to pick x% or f a random. But in order to regp the full power of
andogicadreasoning, it is necessary to have accessto an intelligently structured database. In the
next section, we shall consider the hypothesis that memory is structured specificaly so asto
efficiently supply the process of anaogy with the dataiit requires.

ANALOGIESAMONG DIGRAPHS

It should be noted that an entity which characteristicaly seeks certain types of patterns will
therefore characterigticaly make certain types of anaogies. In other words, different analogies
may occur to different entities, depending on the idiosyncracies of the pattern recognition
dgorithmsinvolved. This point of view may be helpful in relaing the present gpproach to other
analyses of analogy.

For instance, Poetzsche's (1988) theory of andogy deds only with structurd andogy and
appliesto precisdly those entities which:

1) recognize patterns only in digraphs.
2) compute structurd similarity using only patterns (X,y) of the form y={v,w},

where v = "congtruct x by connecting node nu of z to node m: of w, node re of z to node nr of
w,..." and * is defined accordingly.

In other words, according to Poetszche's definitions, two digraphs are structurdly similar if they
have a common subgraph.

This scheme dedls well with processes that can be easily decomposed into subprocesses. In
particular, Poetszche is concerned with robot motion: hisgoal isto construct arobot which can

figure out how to complete a task based on knowledge of how to complete smilar tasks. Toward

this end, he has designed a robot which interndly expresses each task as a digraph of
"dementary tasks'. Given anew task, the robot searches its memory for atask with astructuraly
amilar digraph and then (by structura analogy) uses this as the sarting point for figuring out

how to do the task at hand.

6.2 Analogy and Induction
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Induction and analogy are obvioudy closdy related. In induction one assumes the future will
be amilar to the past, and tries to guess which of aset of past patterns will continue into the
future. In analogy one assumes that Smilar entities will have smilar patterns, and directs pattern
recognition on this basis. The difference is that in anadogy, one is merdly trying to locate patterns
in some entity X, by andogy to some entity x%. In induction, on the other hand, one assumes that
acomplete catalogue of patterns has aready been recognized, and one tries to make a coherent
mode out of these patterns. The two processes complement each other.

BACKGROUND KNOWLEDGE

Many Al researchers view analogical reasoning with a great ded of skepticism. For ingtance,
Bipin Indurkhya has argued that

One naturdly asks: Given some gate of background knowledge, what judtification is
there, if any, that Smilaritiesin certain respects determine Smilaritiesin other respects? ...an
inference from analogy cannot be justified on the bas's of existing smilarity between the source
and the target done. Thejudtification, if any, must come from the background knowledge in
some other form.... Onceit is redized that an inference based only on some exising smilarity
between the source and the target -- and nothing ese -- is about asjudtified as arandom
inference, one learns to exercise extreme caution in deriving an inference from analogy. One
seeks judtification in other places; it must be some other piece of knowledge, some piece of fact,
which "judtifies’ why the existing Smilarities determine the inferred ones. And if no such
judtification can be found, the so-called analogical inferenceis to be properly discarded. (1988,
pp. 224-25)

In the notation introduced above, the "source” isx% and the "target” isx. The point isthét, in
generd, there is no reason to believe that the existence of some smilarities between x and x%
implies the existence of other amilarities

Indurkhya thinks thisimplication must be drawn from "facts" and "background informetion.”

Redly, there are two questions here. Thefirg is, when isit judtifiable to assume that the
existence of adegree D1 of smilarity between x and x% implies a degree D2 of amilarity
between x and x%. In other words, how can one tell when reasoning by andogy isjudtifiable at
al; and when isit judtifiable, how can one tdl to what extent? The other is, how isit possble to
tell, based on the type of smilarity between x and x%, what kinds of further smilaritiesto look
for. That is in Step 2 of the analogy agorithm, isthere some way to determine what sorts of
patterns (y,z) should be looked at on the basis of the smilarities used for the computation?
Indurkhya, expressing aview which iswidespread in the Al community, states that both of these
guestions should be answered by reference to "background knowledge'.

Does this requisite background knowledge perhaps come from deduction? This may be truein
certain ingances. But, as we shdl see, deductive reasoning is only useful when it is paired with
andogicd reasoning. The andogies used in executing deductive reasoning cannot all be
executed on the basis of background information obtained by deduction.
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Does the background knowledge come from experience? If o, it does not come directly from
raw, unprocessed sense perception; it comes out of the process of induction. Induction requires
pattern recognition. And | suggest that effective general pattern recognition requires analogy.
From this it follows thatthe background information Indurkha requires cannot come entirely from
experience: either it comes from some other source or it is not aways necessary.

However, dthough induction may not be used to judtify every particular anaogy, it may ill
be used to justify andogy in generd. This may sound contradictory, but the paradox is only
gpparent. Not dl the andogies used in inductive reasoning can be justified inductively. However,
if andogiesthat are not justified by induction are used anyway, and they happen to work, then
the tendency to take habitsimplies that andogy can be expected to work in the future.

| find this argument rather convincing. On the basis of ample red-world experience, we know
that andogy has often worked in the past. We have obtained useful results from it so often that
its effectiveness must be consdered a very intense pattern in the past. Therefore, by the tendency
to take habits -- by induction -- it isrdaively likely that andlogy will work in the future. Hence it
is advisable to reason by anaogy.

Another way to phrase thisisto postulate a"spatia” tendency to take habits, to the effect that
andogy does in fact tend to work more often than it would in arandomly sdected universe
obeying the tempord tendency to take habits. This strategy seems much less eegant than in the
temporal, inductive tendency to take habits; it has more of an ad hoc flavor. But it does yield the
desired result.

6.3 Hierarchical Analogy

We have not yet discussed the possibility that analogies might be justified by anaogy.
Obvioudy, andogy as agenerd mode of thought cannot be justified by andogy; that would be
circular reasoning. But, just as particular analogies can be judtified by inductive or deductive
background knowledge, o can particular analogies be justified by analogica background
knowledge. In some cases, the mind may use analogical reasoning to determine how probable it
isthat amilarity A between x and x% will imply Smilarity B between x and x%.

y obsarving which smilarities have, in smilar gtuations, led to which other amilaities.
Actudly, this sort of andogical background information is a specid kind of inductive
background information, but it isworth distinguishing.

Let us be more precise. Assume that processor P1 executes along sequence of andogica
reasoning processes, and processor P2 observes this sequence, recording for each instance a
vector of the form (w,w%,f,w,w%,v,v%,R,r), wherer is a number measuring the tota
prominence of the patterns recognized in that instance, and R is the set of patterns located.

The prominence of a pattern may -- asin the previous chapter -- be defined as the product of
itsintengty with itsimportance. The prominence of a set of patterns S may be crudely defined as
%S%K, where Sisthe structural complexity %S% of the set and K is some number representing
the prominence of the set. A very crude way to define K is as the average over dl (y,z) in Sof
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theimportance of (y,z). A more accurate definition could be formulated by a procedure smilar to
Algorithm 3.1.

Then processor P2 can seek to recognize patterns (y,z) with the property that when x isa
pattern in (w,w%.,f,w,w%,v,v%,R), r tends to be large. Thisis an optimization problem:
maximize the corrdation of r with the intengty of x, over the space of paiternsin the first Sx
components of the vector. But it isa particularly difficult optimization problem in the following
sense: determining what entities lie in the space over which optimization istaking placeis, in
itself, avery difficult optimization problem. In other words, it is a congtrained optimization
problem with very unpleasant congtraints. One very smple gpproach would be the following:

1. Using straightforward optimization or analogy, Sseek to recognize patternsin
(X, x%,f,w,w%,v,v%,R).

2. Over the space of patterns recognized, see which ones correlate best with larger.

3. Seek to recognize new patterns in (x,x%,f,w,w%,v,v%,R) in the vicinity of the answer(s)
obtained in Step 2.

Perhaps some other approach would be superior, but the difficulty is that one cannot expect to
find patternsin a given narrow vicinity merely because functionsin that region correlate well
with r. The focus must be on the location of patterns, not the search for large correlation with .

In thisway andogy could be used to determine which andlogies are likely to pay off. This
might be caled second-leve andogy, or "learning by analogy about how to learn by andogy.”
And the same gpproach could be gpplied to the andogies involved in analyzing anaogies,
yidding third-level andogy, or "learning by andogy how to learn by andogy how to learn by
anaogy." Et cetera. These are tremendously difficult optimization problems, so that learning on
these levesislikely to be rather dow. On the other hand, each ingght on such ahigh leve will
probably have a great impact on the effectiveness of lower-leve andogies.

Let us be more precise about these higher levels of learning. A processor which learns by
second level analogy must be connected to a processor which learns by analogy, in such away
that is has access to the inputs and the outputs of this processor. Similarly, a processor which
learns by third level analogy must be connected to a processor which learns on the second level
in such away that it has access to the inputs and the outputs of this second-level processor -- and
the inputs and outputs of this second-level processor include dl the inputs and outputs of & least
one firgt-level processor. In generd, the absolute minimum number of inputs required for an n'th
level andogy processor is proportiond to n: thisisthe case, for ingance, if every n'th leve
processor is connected to exactly one (n+1)'th level processor. If each n-level processor is
connected to k (n-1)'th level processors for some k>1, then the number of inputs required for an
n'th level processor is[1-kn+1]/[1-K].

In generd, if aset of andogicd reasoning processors -- Nk learning on level k, k%n -- is

arranged such that each processor learning on level k is connected to dl the inputs and outputs of
some set of nk processors on level k-1, then the question of network architecture is the question
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of the relation between the Nk and the n«. For ingtance, if Nknk=8Nk-1, then each (k-1)-leve
processor is being andyzed by eight different k-level processors; but if Nknk=Nk-1, then each (k-
1)-level processor is being andyzed by only one k-level processor.

Thisisan hierarchicd andogy network: a hierarchy of processors learning by andogy how to
best learn by andlogy how to best learn by analogy how to best learn by analogy... how to best
learn by analogy. Aswill be explained in later chapters, in order to be effective it must be
coupled with a structurdly associative memory network, which provides a knowledge base
according to which the process of analogy can be executed.

6.4 Structural Analogy in the Brain

The neurons of the cortex are organized in clusters, each containing 50 to 10,000 neurons. The
neurons of each cluster are connected primarily to other neuronsin the same clugter. Edelman
(1988) has proposed that it makes sense to think of connections between clusters, not just
individual neurons, as being reinforced or inhibited; and he has backed this up with a detailed
mathematical model of neura behavior. Following this line of thought, it is the nature of the
interaction between neurd clusters which interests us here. We shdl show that, according to a
smple modd inspired by Ededman'sidess, the interaction of neurd clusers givesriseto asmple
form of structurd anaogy.

Eddman's theory of "Neural Darwinism" divides the evolution of the brain into two phases.
Thefirgt, which takes place during fetal development, is the phase of cluster formation. And the
second, occurring throughout the remainder of life, is the phase of repermutation: certain
arrangements of clusters are selected from the set of possible arrangements. Thisisnot an
outlandish hypothes's, Changeux (1985), among others, has made a smilar suggestion. Edelman,
however, has formulated the theory as a sequence of specific biochemical hypotheses, each of
which is supported by experimenta results.

Roughly spesking, a set of dlusters which is habitudly activated in a certain order iscdled a
map. Menta process, according to Edeman's theory, conssts of the selection of maps, and the
actua mapping of input -- each map receiving input from sensory sources and/or other maps,
and mapping its output to motor control centers or other maps. Mathematically spesking, a map
is not necessarily afunction, Since on different occasions it may conceivably give different
outputs for the same input. A map is, rather, adynamica system in which the output yt & timet
and theinterna state St at timet are determined by yt=f(xt-1,St-1), St=g(xt-1,Mt-1), where xt is
theinput a timet. And it isadynamica system with aspecia structure: each map may be
goproximately represented as a serid/paradlel composition of simple maps which are composedof
gngle clugters. One key axiom of Edelman's theory is the existence of numerous "degenerate”
clugters, dusters which are different in interna structure but, in many stuations, act the same
(i.e. often produce the same output given the same input). Thisimplies that each map isinfact a
serid/pardld combination of Smple component maps which are drawn from afarly smal s,
or a least extremey Smilar to dements of afarly smal st.

Thereis much more to Neural Darwinism than what | have outlined here -- for instance, | have
not even mentioned Eddman's intriguing hypotheses as to the role of adhesion moleculesin the
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development of mentality. But there are nevertheless a number of mysteries at the core of the
theory. Most importantly, it is not known exactly how the behavior of acluster varieswith its
grengths of interconnection and itsinternd date.

Despite this limitation, however, Neurd Darwiniam isin my opinion the only existing
effective theory of low-to-intermediate-level brain structure and function. Philosophicaly, it
concords well with our theory of mind: it concelves the brain as a network of "maps’, or
"functions’'. In previous chapters we spoke of anetwork of "programs,” but the terms " program”
and "map" arefor al practica purposes interchangeable. The only difference isthat a programis
discrete whereas the brain is considered "continuous,”" but since any continuous system may be
approximated arbitrarily closdy by some discrete system, thisis inessentid.

So, consider aset of n processors P, each one possessing an internd state St at each timet.
Assume, as above, that the output it a timet and the internal sate St at timet are determined
by yit=fi(xit-1,St-1), St=g(xit-1,Sit-1), where xit isthe input & timet. Define the "desgn” of
each processor asthe set of al its possible states. Assume the processors are connected in such a
way that the input of each processor is composed of subsets of the output of some set of k
processors (where k is smal compared to n, say O(logn)). Thisisabasic "network of
processors’.

Note that we have defined f and g to vary with i. Strictly spesking, this meansthat the
different processors are different dynamical systems. In this case, what it redly means,
intuitively, isthat fi and g may vary with the pattern of flow of the dynamica system. In fact,
from here on we shdl assume g=g for dl i; we shal not consider the possibility of varying the
g. However, we shall be concerned with minor variationsin the fi; in particular, with
"strengthening” and "weakening" the connections between one processor and ancther.  For this
purpose, we may as well assume that the space of outputs yit admitsis Rn or adiscrete
approximation of some subset thereof. Let s, denote the scalar strength of connection from Pi to
P.. For each P, let jfit denote the portion of the graph of fi which is connected to B at timet.
Assumethet if j and | are unequd, then jfir and iIfit are digoint for any t and r; and that jfir= s ; jfit
for dl t and r. According to dl this, then, the only possible variations of fi over time are merely
variations of strength of connectivity, or "conductance'.

As observed above, our model of mind is expressed as a network of processors, and Edelman's
theory expresses brain function as aresult of thedynamics of a network of neurond clusters,
which are specialized processors. In the context of neurond clusters, the "design” as defined
above is naturaly associated with the graph of interconnection of the neuronsin the clugter; a
particular date is then an assgnation of charge levesto the neuronsin the clugter, and a
specification of the levels of various chemicas, most importantly those concerned with the
modification of synaptic strength. According to Edelman's theory, the designs of the million or
S0 processors in the brain's network are highly repetitive; they do not vary much from amuch
gmadler sat of fundamental designs. And it is clear that dl the functions fi regulating connection
between neurond clugters are essentidly the same, except for variations in conductance.

THE NOISY HEBB RULE
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D.O. Hebb, in his dassc Organization of Behavior (1949), sought to explain mental processin
terms of one very smple neura rule: when a synaptic connection between two neuronsis used,
its "conductance” is temporarily increased. Thus a connection which has proved somehow useful
in the past will be reinforced. This provides an elegant answer to the question: where does the
learning take place? Thereis now physiologica evidence that Hebbian learning does indeed
occur. Two types of changesin synaptic strength have been observed (Bliss, 1979): "podt-tetanic
potentiation”, which lagts for a most afew minutes, and "enhancement”, which can last for hours
or days.

Hebb proceeded from this smple rule to the crucid concepts of the cdll-assembly and the
phase-sequence:

Any frequently repeated, particular stimulation will lead to the dow development of a"cdll-
assembly”, adiffuse structure comprising cdlls in the cortex and diencephalon... capable of
acting briefly as a closed system, ddlivering facilitation to other such systems and usdly having
aspecific motor facilitation. A series of such events condtitutes a*phase sequence” -- the thought
process. Each assembly action may be aroused by a preceding assembly, by a sensory event, or --
normdly -- by both.

Thistheory has been criticized on the physiologicd leve; but thisisredly irrdevant. As Hebb
himsdf sad, "itis... on aclass of theory that | recommend you to put your money, rather than
any specific formulation that now exigts' (1963, p.16). The more serious criticiam is that Hebb's
ideas do not redly explain much about the most interesting aspects of menta process. Smple
gimulus-response learning is along way from andogy, associative memory, deduction, and the
other aspects of thought which Hebb hypothesizes to be specia types of "phase sequences'.

Edeman'sideas mirror Hebb's on the level of neural clusters rather than neurons. In the
notation given above, Edelman has proposed that if the connection from P1 to P2 is used often
over acetan interval of time, then its'conductance” si,2 istemporarily incressed.
Physiologicdly, thisis a direct consequence of Hebb's neurontleve principle; it is smply more
gpecific. It provides abagsfor the formation of maps. sets of dusters through which information
very often flows according to a certain set of paths. Without this Hebbian assumption, lasting
maps would occur only by chance; with it, their emergence from the chaos of neurd flow is
virtualy guaranteed. At bottom, what the assumption amountsto isaneura verson of the
principle of induction. It says if a pathway has been useful in the past, we shdl assumeit will be
useful in the future, and hence make it more effective.

Unfortunately, there is no reason to believe that the cluster-leve interpretation of Hebb's
theory is sufficient for the explanation of higher mental processes. By condtructing asmulation
meachine, Edelman has shown that a network of entities much like neura clugters, interacting
according to the Hebbian rule, can learn to percaive certain visua phenomenawith reasonable
accuracy. But thiswork -- like most perceptua biology -- has not proceeded past the lower levels
of the perceptua hierarchy.

In order to make a bridge between these neura considerations and the theory of mind, | would
like to propose a subgtantialy more generd hypothesis: that if the connection between Pr and Ps
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is used often over acertain interva of time, and the network is structured so that P> can
potentialy output into Ps, then the conductance s,z is likely to be temporarily increased.

Aswe shdl see, this"noisy Hebb rule’ leads immediatdy to a smple explanation of the
emergence of andogy from a network of neurd clusters. Although I know of no evidence either
supporting or fasifying the noisy Hebb rule, it is certainly not biologicaly unreasonable. One
way of fulfilling it would be a spatid imprecision in the execution of Hebbian neura induction.
That is, if theinductive increase in conductance following repeated use of a connection were by
some means spread liberaly around the vicinity of the connection, this would account for the
rule to within a high degree of gpproximation. Thisis yet another case in which imprecison may
lead to positive results.

THE NOISY HEBB RULE AND STRUCTURAL ANALOGY

Condder the Stuation in which two maps, A and B, share acommon set of clugters. This
should not be thought an uncommon occurrence; on the contrary, it is probably very rarefor a
cluster to belong to one map only. Let B-A (not necessarily amap) denote the set of clustersin B
but not A. The activation of map A will cause the activation of some of those clustersin map B-
A which are adjacent to clustersin A. And the activation of these clusters may cause the
activation of some of the clugtersin B-A which are adjacent to them -- and so on. Depending on
what isgoing on in the rest of B, this process might peter out with little effect, or it might result
in the activation of B. In the latter case, what has occurred is the most primitive form of
sructurad anaogy.

Structurd andogy, as defined earlier, may be very roughly described asreasoning of the form:
A and B share acommon pattern, so if A isuseful, B may aso be ussful. The noisy Hebb rule
involves only the smplest kind of common pattern: the common subgraph. But it isworth
remembering that analogy based on common subgraphs dso came up in the context of
Poetszche's approach to analogica robot learning. Analogy by common subgraphs works. There
isindeed a connection between neura anadlogy and conceptua analogy.  And -- looking ahead
to chapter 7 -- it isaso worth noting that, in this smple case, andogy and sructurdly
associaive memory are inextricably intertwined: A and B have a common pattern and are
consequently stored near each other (in fact, interpenetrating each other); and it isthis
associative storage which permits neural andlogy to lead to conceptua andogy.

87

7
Long-Term Memory
7.0 Structurally Associative Memory
It is clear that analogy cannot work effectively without recourse to an effective method of

gtoring patterns. However, | suggest that an even stronger statement holds: the nature of analogy
actudly dictates aparticular type of memory structure. The only way andogy can work
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effectively isif it is coupled with amemory that is specificaly structured so asto support
andogicd reasoning.

This memory mug, of course, be a"'long-term memory”: its contents must be sufficiently
permanent to carry over from one Situation to another. | will argue that the entire structure of the
mind's long-term memory can be dicited through the study of analogy. On the other hand, the
"ghort-term memory™ of contemporary psychology is essentialy aeuphemism for
"consciousness', and we shdl ded with it in alater chepter.

In acompletely different context, Joussdlin (1987) has reached asmilar conclusion regarding
the relation between processing and memory. He has shown that, in avery generd mathematica
sense, the nature of the operations carried out by the processor of a computer actually determine
the structure of the memory of that computer.

Strictly spesking, what is given hereis not amodd of how memories are physicaly stored in
the brain or anywhere else, but rather amode of how memory access must work, of how the
time required to access different memories in different Stuations must vary. However, following
Joussdlin, | hold that the structure of memory accessis much if not dl of the structure of
memory. This point will be elaborated below.

ASSOCIATION AND PATTERN

The modd which | will proposeisassociative in the sense that it stores related elements near
each other (Kohonen, 1984; Pam, 1980). | have adready suggested that mental processis
founded on induction and analogy, which arebased on pattern recognition. It follows from this
hypothesis that, from the point of view of mental process, two entities should be considered to be
associated if and only if they have patternsin common, or are bound together as the substrate of
acommon pattern.

Asin Chapter 3, let IN(X,y;2) denote the intengity with which (x,y) isapattern in z. Then the
networ k of emer gence associated with a set of functionsis aweighted graph of which the nodes
correspond to the functions, and in which esch triple X, y an z is connected as follows
%

y %0%%0%0%%0%6%6%0%%
%cC %0%0%% X

Z %0%0%0%6%0%0%0%% %%

with weight c=IN(x,y;2). If IN(X,y;2)=0 then, of course, no zero-weight connection need actudly
be drawn. The essentia aspect of this diagram isthat each of x, y and z holds a unique position.
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A structurally associative memory, associated with a set of functions, is dso aweighted
graph. The nodes correspond to the functions, and the nodes are connected in triples. In these
respectsit issmilar to anetwork of emergence. But it need not possess the perfect structure of
the network of emergence. Rather, if it does not possess this perfect Structure, it is required to
continualy adjust itself S0 asto better gpproximate the structure of anetwork of emergence. It
may contain the same entity a many different places. It may adjust itsdlf by connecting nodes
which were not previoudy connected, by adjusting the intengity of existing connections, or by
adding new nodes (representing new or old entities).

The degree to which agraph is a sructurdly associative memory may be defined in a number
of ways, the smplest of which are of the form: 1/[1-c*(the amount by which the graph deviates
from the network- of-emergence structure)], where c is an appropriately chosen positive constant.
But there is no need to go into the detalls.

From here on, | will occasonaly refer to astructuraly associative memory of thissort asa
STRAM. Imperfection in the dructure of a STRAM may stem from two sources: imperfect
knowledge of the degrees to which acertain pair of functionsis a pattern in other functions; or
imperfect reflection of this knowledge in the structure of the network. The former is a pattern
recognition problem and relates to the interconnection of cognition and memory, to be addressed
below. For now let us concentrate on the latter difficulty: given a certain set of data, how cana
gructurdly associative memory be inteligently reorganized?

In practice, astructuraly associative memory cannot be given an unlimited number of nodes,
and if it has areasonably large number of nodes, then not every triple of nodes can be
interconnected. The number of connecting wires would very soon grow unmanagegble. Thisis
the familiar combinatorialexplosion. To be practica, one must consider afixed set of n nodes
each connected to a small number k of other nodes (say k=0O(logn)), and one must arrange the
given functions among these nodes in such away asto gpproximate the structure desired. When
anew function is cregted, it must take a node over from some other function; and likewise with a
new connection. Thisrequires an intricate balancing; it is a difficult optimization problem. What
isrequired isaragpid iteraive solution; an dgorithm which is ale to continudly, incrementaly
improve the dructure of the memory while the memory isin use. We shdl return to thisin
Section 7.2.

7.1 Quillian Networks

It is rather difficult to study the structure of human long-term memory, since we cannot 1ook
into a person's brain or mind to determine the processes by which their memory organizesitself.
The only aspect of memory which is open to study is memory access. In particular, agreet ded
of attention has been devoted to the time required for memory access.

One frequently studied phenomenon is "priming": an experimenter shows the subject one
|etter, then shows two other |etters smultaneoudy, and measures how long it takes for the
subject to determineif the two Smultaneoudy presented |etters are the same or different. The
answer comes condderably faster when the one priminary letter is the same as one of the two
smultaneous | etters (Posner and Snyder, 1975). This shows that when something is summoned
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from memory it is somehow "at the top” of the memory for a period afterwards, somehow more
eadly accessble.

According to the idea of structurdly associative memory, if X is more easlly accessiblethany,
those things which are Smilar to x should in genera be more easily accessible than those things
which are smilar toy. This has been shown by many different experimenters, eg. Ripset d
(1973).

Thisis an essentia result; however, it is clear that this smple feature would be predicted by all
sorts of different memory modds. Using similar techniques, psychologists have attempted to
determine the structure of memory in further detall. For instance, Collins and Quillian (1969)
performed severa experiments to test Quillian's network theory of memory (Fig. 3), according to
which concepts are stored as nodes in adigraph. For instance, chair, couch and table would be
stored on nodes emanating from the furniture node; and coffee table and dinner table would be
stored on nodes emanating from the table node. In their experiments, subjects were asked to
veify sdatements of theform"an X isaY" -- say, "acouch isatable’, or "acouch isfurniture’.
Collins and Quillian predicted that the time required to verify the sentence would be alinear
function of the number of links between the concepts in the memory digraph.

This hypothesis a first appeared to be correct; but further experiments showed that the model
has difficulty deding with negative responses. Therefore Rips et d proposed an dternate mode
of memory in which the smilarity of twoentities is defined as the amount by which their
"semantic features' overlgp. According to their experiments, this sort of amilarity isafar better
predictor of reaction time than Quillian's hierarchica distance.

Collins and Loftus (1975) responded with an improvement of the Quillian model, according
which concepts are stored in the nodes of a network, and each link of the network is assigned a
weight corresponding to the degree of association between the concepts that it connects. Memory
access then involves two stages: 1) "spreading activation”, in which an activated node spreads its
activation to neighboring nodes, and 2) evauation of the most active portion of the network. This
accounts for the data because it incorporates the "feature overlgp” of Rips et d into the network
gructure. Ratcliff (1989) has criticized the modd for not adequately explaining the process of
evauation; but this seems to me to be beside the point.

Themodd of Collinsand Loftus is somewhat Smilar to the structurdly associative memory;,
the biggest differenceisthat in the Collins and Loftus modd, "smilarity” isimposed apriori
from the outside. The mode does not explain how the mind assigns these degrees of amilarity.
Psychologicdly, thisis unsatisfactory. However, it must be noted that "Quillian networks' of the
sort studied by Collins and L oftus have since become quite common in Al programs. The apriori
nature of amilarity is no problem here, since the writer or user of the program can specify the
pertinent degrees of amilarity. Quillian networks are a smple and effective way of representing
knowledge.

A unigue Quillian network may be derived from any network of emergence by avery smple
process. To explain thiswe shdl require one preliminary concept.
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Definition 7.1: The contextual distance between x and y, relative to the set V, isthe sum over
al vinV of def S(x%v)- St(x),SX(y%v)-St(v)]. It will be denoted di(X,y).

This measures the distance between x and y rdlaiveto the set V: not only direct structura
amilarities between x and y are counted, but o amilaritiesin theways x and y reaeto
eementsof V.

Then, to form the Quillian network corresponding to a given network of emergence, one mugt
amply create anew link between each two nodes, and weight it with the contextual distance
between the entities stored at the nodes, relative to the other entities in the memory.

The structuraly associative memory network refers to a deeper leve than the Quillian
network, but it is fully compatible with the Quillian network. It therefore seems reasonable to
hypothesize that anything which the Quillian network explains, the structurally associtive
memory can aso explain. However, there are certain phenomena which require a deeper
andysis, and hence the full power of the structurally associative memory.

For example, it will be seen below that the detalls of the reationship between memory and
andogy fdl into this category. The Quillian network supports avery rough form of analogy based
onapriori "smilarity”, but to explain the full subtlety of andogica reasoning, the Sructurdly
asociative memory isrequired.  In generd, it would seem that the Quillian network is not
redly suited to be alarge-scae, adaptive, salf-organizing memory. The structuraly asocidive
memory is based on pattern recognition and hence it can easily be modified on the bass of new
pattern recognitions. And the STRAM stores more refined data: it stores information about the
type of relaion between two entities.

The remainder of this chapter will be devoted to showing that the STRAM is capable of
functioning as alarge- scale, adaptive, saf-organizing memory; and showing how its Sructure
relates to andogical reasoning.

7.2 Implications of Structurally Associative Memory

Let us now return to the problem of how a STRAM isto maintain its approximate network- of-
emergence gructure. One way to gpproach this optimization problem is viathe multilevd
methodology (Goertzel, 1989). This gpplication of the multilevel methodology bears a strong
amilarity to Achi Brandt's (1985) multileve dgorithm for the ISng spin problem.

Thefirg level would be the following procedure:

1) assign nodes to any newly-introduced functions, and single out a number of
pre-existing nodes, in such away that the nodes assgned and sdlected are
gpproximately evenly distributed across the network (so that no two are too

close to each other). Cal these functions x and their nodes N(x).
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2) switch the node of each of these functions x with the node of one of the

functionsy with which it shares a pettern -- that is, assign x node N(y) and y node N(x) -- and
seeif, according to the new arrangement, the total amount of pattern which the network indicates
inx andy isgreater. If 0, let N(x)=N(y) and let N(y)=N(x) -- that is, make the switch
permanent -- and apply Step 2 to xi again. If not, proceed to one of the other functionsy with
which x shares a pattern (say, proceeding through the xi in order of decreasing intensity of

shared pattern). Once dl the functions with which x shares more than e (some small fixed
number) worth of pattern have been exhausted, exit Step 2.

This dgorithm moves functions through the network toward their "proper postion.” The

problem isthat, even if x isnot inits optima postion, its postion could well be better for it than
the positions of its neighbors. Idedlly, one might like to try each x out in every possible position;
and dthough thisis not possible, one may indeed improve upon the "neighbors-only" approach.

Following the multilevel methodology, one could seek to find the optimum node for x among
those nodes at a distance between h and he from x in the network (where the distance between
two nodes is measured by the number of links separating them). One could attempt this by the
Monte Carlo method,randomly seeking to switch x with functionsin this region, or one could
attempt this by randomly beginning the neighbors-only search given above from pointsin this
region.

And if one found anew home for x in this region, one could execute the neighbors-only
search from the new home. And from the answer which this yielded, one could execute the
second-level search. And one could repeat this entire process according on an arbitrary number
of levels, according to the basic framework outlined in Chapter 2.

Of course, thisis only one possihility; the multilevel philosophy could be gpplied in many
different ways, and there are many other approaches to optimization. The important point is that,
by some specidly-tailored optimization method, the network must continualy reorganize itsdlf
S0 asto better gpproximate the network of emergence structure, and so asto integrate new datain
amanner which maintains this structure. 1t would seem to be completely impossible to
determine, at this stage, the actud method by which the human brain reorganizes its memory
network.

HOLISTIC MEMORY

It might seem that no organism could afford to continually subject its memory to such arisky,
gpeculative optimization algorithm as that sketched above. It could be, of course, that there exists
some optimization agorithm which is subgtantidly more effective than those presently known.
However, as emphasized in Chapter 2, most researchers doubt if there will ever exist arapid,
highly accurate dgorithm for the solution of difficult optimization problems. In the context of
associative memory, rapidity is of the essence, so it is probably true that rough approximete
answers must suffice.
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If one were designing abrain, one way of partidly diminating the risk involved in adjusting
memory according to a highly approximate agorithm would be to provide it with alarge number
of sructuraly associative memories, each soring largely the same functions. In fact, it has often
been observed that biologica memory is haligtic in the sense that it gppears to "store dmost
everything dmost everywhere'. Any small section of the cortex gppears to contain alarge part of
the data which the cortex stores. This an empirica observation, vaidated repeatedly in the
laboratory (Hubel, 1988).

It has been suggested that holistic memory is necessary because of the error-prone nature of
the brain's components. Thisis amogt certainly true. However, the present considerations
suggest another good reason: the nature of structuraly associative memory seemsto require that
memory structure be continualy subjected to radica, experimenta transformations. In order for
these transformations not to interfere too much with continuad memory use, the mind must
incorporate some sort of "workspace” in which unsuccessful transformations may be tried and
discarded without globd effect. In short: holistic memory may be necessary not only because of
the error-prone natureof the brain's "hardware", but aso because of the error-prone nature of
high-level menta process.

PHYSICAL MEMORY STRUCTURES

In this context, let us return to the question of physica memory. A physicad memory is
obvioudy, not aweighted graph. Nonetheless we would like to cal certain physical memories
gructurdly associaive memories. Therefore it is necessary to assgn to each physicad memory M
aset of "naturaly correspondent” structuraly associative memories. We know of no completely
satisfactory way of doing this, but the following schemeis not unreasonable. It requires only that
we assign to each pair of dements (x,y) stored by M adistance Dm(x,y) which measures the
difficulty of locating X in memory given that y has very recently been located. Let Fbea
mapping which takes the set S of dements stored by M into the nodes of a graph; let L(X,y)
denote the number of linksin the graph F(S) along the shortest path from(x) to F(y). Then the
accuracy with which F represents M may be defined by the average, over dl (x,y), of %L (X,y)-
Dwm(X,y)%. This definition requires that, in a rough sense, distance in the memory M correspond
to distance in the graph F(S). Certainly there is more to be done in this direction, but the point is
that it isindeed possible to model any sort of memory as a graph, and hence to andyze any sort
of memory as structurdly associative memory.

MEMORY AND ANALOGY

Findly, we must now explore the manner in which a structuraly associative memory may be
utilized by cognitive processes. In the notation of the definition of analogy given above, consder
that f and y have dready been chosen. The process of selection will be discussed briefly abit
later. Then, given X, an gppropriate X% may be located by asmple process of "looking up” in
STRAM.

In the case of dructura andogy dl that is required is to look for something which has alarge

amount of pattern in common with x. Specificdly, alist must be made of the Sgnificant patterns
in x, and then the other functions in which these functions are aso patterns must be searched,
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with the objective of locating those which have alarge number of these patternsin common.
Thismay be alarge search, and it will have to be gpproximate -- e.g. aMonte Carlo search could
be implemented, skipping over a random some of the neighbors. The point is that the making of
the ligt of patternsin x, and of neighbors which may aso possess these patterns, ismerdly a
matter of looking at the actua graph of the network. Of course, this method will only be accurate
to the extent that the STRAM approximates the network of emergence structure.

In the case of contextua andogy, alis must be made of dl the patterns which emerge
between x and v, and then a search of the neighbors of thesepatterns must be made, until a
function x% is located such that many of the same patterns emerge between it and some other
entity v%b.

If f is not the identity mapping, then things are dightly more involved. One knows only that
f(x%) is close to x in the network; one knows nothing about x% itsdf. So, in generd, alist must
be made of dl the patterns which emerge in x or between x and w, and then a search of the
neighbors of these patterns must be made, until an entity z is located such that many of the same
patterns emerge between it and some other entity w%. Then x% may be set equa to f-1(2). This
involves the potentidly difficult computation of f-1, and it is generdly much more difficult than
structura or contextual anaogy. However, as suggested earlier, even speculative modeding
andogy may be ussful, asin braingorming.

Thelocation of X% is Step 1 of the genera process of anaogy. The next step isthe recognition
of patternsin x%. This process may be decomposed into two stages. isolating the patterns
dready "known" by STRAM to be part of the structure of x%, and finding new patterns not yet
"known" by STRAM. Of coursg, if f istheidentity mepping, then it istrivid to locate dl patterns
in X' that have been identified by STRAM; in fact, thiswas aready done to some degree of
gpproximation in the sdlection of x%. In this case the first sageis very easy to execute. But if f
is not the identity, then in order to find out what STRAM knows about X%, one must search
through STRAM for x% (remember,it is f(x%) which is near x, not necessarily x% itsdf). One
may treet this search as aminimization, over the space of al nodes of STRAM, of the function
d#(x,x%0). It would not be wise to execute this minimization by loca search (from each node
proceeding to that neighboring node which minimizes the function), because the structure of
STRAM isamog certainly imperfect; afocused Monte Carlo search, asmulated annedling
search, or amultilevel search would be much more effective.

The second stage of Step 2, the location of new patternsin x%, will be implicitly addressed
later, when we discuss pattern recognition in generdl.

7.3 Image and Process

In Section 7.2 | explained the ructurdly associative memory by andogy to Quillian
networks. But, as hinted there, the Quillian network has severd undesirable properties not shared
by the STRAM. Some of these are reatively technica, such the fact that the Quillian network
has no connection with the details of analogica reasoning. But there are dso more philosophical
differences. In particular, | will argue that there are absolutdly crucia phenomenawhich the
Quillian network cannot even begin to explain.
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What is a issue here iswhat |sradl Rosenfeld (1988, p.3) has called

amyth that has probably dominated human thought ever snce human beings began to write
about themsdaves. namely, that we can accurately remember people, places and things because
images of them have been imprinted and permanently stored in our brains; and that, though we
maynot be conscious of them, these images are the basis of recognition and hence of thought and
action.

In Rosenfeld's opinion, a careful examination of classical neurologica experiments shows that
"the fundamenta assumption that memories exist in our brains as fixed traces, carefully filed and
stored, may be wrong" (p.5).

For ingtance, consder the well-known series of experiments carried out by Wilder Penfidd,
beginning in the 1930's. He stimulated various aress of the brain in conscious patients and noted
that this gppeared to dicit recollections of "forgotten memories.” At first sight this would seem
to speak againgt Rosenfeld's point -- the naturd interpretation is that Penfield was touching the
aress of the brain in which those memories were stored. But actudly things are not so clear.
Recent experiments show that these forgotten memories are actualy "fragmentary impressons,
like pieces of adream, containing eements that are not part of the patient's past experiences’ (p.
7).

Also, these forgotten memories occur only when the brain stimulation is Smultaneous activity
with the limbic system. Since the limbic system is the seet of emation, thisis evidence in favor
of Freud's observation that memory without emotion would be unrecognizable. As Gloor et d
(1982) put it, describing their observations of epileptic patients:

[W]hatever we experience with our senses... even after it has been elaborated as a percept in
the tempora neocortex, must ultimately be transmitted to limbic structuresin order to assume
experientid immediacy. Thismay... imply that all conscioudy perceived events must assume
kind sort of affective dimengion, if only ever so dight.

Rosenfeld proposes that, rather than storing traces, memory stores procedur es. According to
him, what happened in Penfield's experiments was that certain processes were activated, which
then constr ucted the so-cdled forgotten memories on the spur of the moment, based partly on
emotiond factors and partly on information somehow stored in nearby parts of the cortex.

Further support for this point of view is given by the work of Mahl et d (1964), who observed
these forgotten memories depend significantly upon "the patient's menta content &t the time of
dimulation." Sometimes they may not be memories a al, but merely rearrangements of the
ideas which occupied the patient's mind just prior to imulation

No one denies that part of memory consists of procedures. For instance, every time we form a
spoken word from its syllables, we are applying certain phonologica procedures. However, most
contemporary psychologists would agree with Broca, who argued in 1861 that there isa crucia
sructurd difference between the image-based memory responsible for the storage of words and
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thelr meanings, and the procedura "memory for the movements necessary for articulating
words."

Againg such arguments, Rosenfdld summons an impressive variety of evidence. In each case,
a phenomenon which at first gppears to depend onimage-based memory is seen to require
procedura memory. For instance, he refers to David Marr's demonstration that shapes can be
recognized as shapes without any reference to previous knowledge, merely by executing certain
procedures on the appropriate visua stimuli. This shows that shape recognition probably does
not depend upon searching amemory store of shapes until amatch isfound -- it may, rather, be a
matter of summoning gppropriate procedures from the memory. But if shape recognition does
not require a store of shapes, then why should memory contain such agtore at al?

Rosenfeld admits that "Marr did not totally abandon the idea of fixed memories, snce
ultimately the naming of a shape required, in his scheme, amemory search” (p. 113). To
Rosenfdld, thisis the mgor limitation of Marr's gpproach. However, it ssemsto me that this
shows exactly where Rosenfeld goestoo far. Clearly heisright that the brain does not hold,
somewhere in its memory, little pictures of circles or lipses or squares. Rather, it stores certain
procedures or functions which characterize these shapes. But this fact does not imply dl that he
saysit does.

For the purpose of illudration, let us congder a highly overamplified example. Let y denote
the function which, from P and r, generates the circle with radius r and center P; and let z=(Pyr).
Then, roughly spesking, we may say that a certain collection of simuli x is"representable as a
circle' to the extent that (y,z) isapattern in X. For each shape, there will be one or more such
characterizing patterns. | do not mean to imply that the mind stores shapes by fitting them to
their slandard mathematical equations, but only that it characterizes shapes by certain
"symmetries’ or "computationa shortcuts' which manifest themsdves as patterns. Algebraic
equations are one kind of specifying pattern, but not the only kind. For example, one of the
patterns characterizing the shgpe "square” might be "invariance under reflection and ninety-
degree rotation”.

Let us suppose, then, that in the mind's "language’ each shape is a certain collection of
characterizing procedures. Then what iswrong with caling this collection a”labd™ or "trace” of
the shape? It seems clear that, in generd, amind would do best to store such collectionsin
proximity to each other. After dl, they will very often be used to recognize the same shapes.

Rosenfdd thinks Marr iswrong to speak of a"memory search”. But does he bdieve that a
mind dwaysimmediately selects the most gppropriate procedures? If amind recognizes a shape
by recognizing certain symmetries and other patternsin it, then what could possibly be wrong
with the hypothesis that the mind has to search allittle to determine the gppropriate patterns?

A careful study of Rosenfeld's book reveals that the structuraly associative memory accounts,
schematicdly at least, not only for Marr's work but for all the phenomenawhich Rosenfeld
adduces againg the image-based modd of memory. From the fact that most memory relies on
procedures, one cannot conclude that these procedures are not organized and accessed according
to anetwork structure. Returning to Quillian networks, | agree with Rosenfeld that "chair” is

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 97

gtored in the memory as a collections of procedur es for determiningwhat isachair. But | il
maintain that the Quillian network can be a useful approximation to the actud network of
interreaions between the procedures associated with various entities.

INFORMATION AND RELATION

Extending this point of view, | concur with Erlich (1979, p. 200) that each item stored in
memory should be "conddered cagpable, by rights, of performing two different functions: the
informative function and the relational function.” That is each item in memory isacted on by
other itemsin memory, and aso acts on other items in memory. The Quillian gpproach
emphasizes the static, "acted-upon™ aspect of memory; whereas the Rosenfeld approach stresses
the dynamic, procedura, "acting-on" aspect, and congders actions on externd stimuli aswell as
other memory items.

For ingance, "chair”, "house", "mea" and so forth are collections of procedures which act
very little to transform other entitiesin memory -- mainly they act on externd simuli. But
logicd and mathematica structures, aswell aswords such as"'in”, "on" and "besides’, are
primarily relationd: they are collections of procedures which serve primarily to act on other
entities sored in memory.

More precisdy, what | mean hereby "A actson B" isamply: "A isafunction which takes B
as arguments.” Those entities which are patterns between other entities in memory will thus "act
on" many other entities. This definition is vaidated by the fact that such entitieswill very often
be invoked by andogical searches proceeding from B to A; and by the fact that if A actson B,
recognition of B as a paitern in an entity will often be followed by recognition of A.

In sum: the STRAM isamemory modd which 1) accounts for the procedura nature of
memory, 2) recognizes the gpproximative value of static semantic networks, 3) explains the sdf-
organizing, generative nature of memory, and 4) acknowledges the intricate structura
interdependence of memory with cognition.

SPARSE DISTRIBUTED MEMORY

Another way to look at this dichotomy isto observe that the STRAM is superficidly amilar
to Kanerva's (1988) "sparse distributed memory”, in which entities are coded as binary sequences
and stored, each in severd places, near other sequences that are "similar”. Kanerva measures
smilaity by the Hamming distance -- the fewer placesin which two sequences differ, the more
gmilar they are. Thisisided for amemory storing images of physica objects, which may be
conveniently characterized by aligt of binary qualities. For instance, one could associate with a
physical object A abinary sequence au...an asfollows a is1if and only if the object isred, a is
1if and only if the objectis green, ar7 is 1 if and only if the object is dirty, etc. Given any such
assignation of sequences to objects, the smilarity of two objects A and B could be plausibly
measured by the number of places in which the sequences au...an and ba...bn differed.

But for amemory storing relations, procedures and so forth, it is much more direct to measure
amilaity structurally, asisdone in the STRAM. It would certainly be possible to encode
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complete information about a complex procedure in abinary sequence. This possibility lies at the
core of agorithmic information theory. But thisis not a natural way to relate procedures. To
make the Hamming distance mesh smoothly with andogica reasoning, one would have to
enumerate al possible patterns wa,...,wm, and assign each entity A abinary sequence a,...,an
based on the formula: for some fixed C, and 0%r<k, ank+=1 if and only if wm isapatternin A
with intensity greater than rC but less than (r+1)C.

Given this sstup, Kanervas sparse distributed memory would be extremdy similar to the
STRAM. Buit it would completely ignore the fact that the procedures being stored were
procedur es and not merdly images of physical objects. The emphasis would be informationd.
The STRAM gives equd baance to the informationa and rdaiona functions of the entities
gored in memory.

8
Deduction
8.0 Deduction and Analogy in Mathematics

In mathematicd logic, deduction is andyzed as athing in itsdf, as an entity entirely
independent from other mental processes. This point of view hasled to dozens of beautiful idess:
Godd's Incompleteness Theorem, the theory of logica types, modd theory, and so on. But its
limitations are too often overlooked. Over the last century, mathematica logic has made
tremendous progress in the resolution of technical questions regarding specific deductive
systems; and it has led to severa sgnificant ingghts into the genera properties of deductive
systems. But it has said next to nothing about the practice of deduction. Thereis a huge distance
between mathematical logic and the practice of logic, and mathematica logic seemsto have
essentidly logt interest in closing this gep.

Let us congder, firg of dl, deduction in mathematics. What exactly isit that mathematicians
do? Yes, they prove theorems -- that is, they deduce the consequences of certain axioms. But this
isahighly incomplete description of thelr activity. One might just aswell describe their work as
detecting analogies between abstract structures. This processisjust as universa to
mathematica practice as the deduction of consequences of axioms. The two are inseparable.

No one proves a theorem by randomly sdlecting a sequence of steps. And very little theorem
proving is done by logically deducing sequences of steps. Generdly, theorems are proved by
intuitively selecting steps based on anaogy to proofs one has done in the past. Some of this
andogy ishighly specific -- e.g. proving one existence theorem for partid differentid equations
by the same technique as another. And some of it is extremely generdized -- what isknown as
"mathematicad maturity"; the ability, gleaned through years of sudious andogica reasoning, to
know "how to approach™ a proof. Both specific and generd anaogy are absolutely indispensable
to mathematical research.

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 99

Uninteresting mathematica research often makes use of overly specific andogies -- the
theorems seem too Smilar to things that have dready been done; frequently they merdy
generdize familiar results to new domains. Brilliant research, on the other hand, makes use of far
subtler andogies regarding generd srategies of proof. Only the most tremendoudly,
idiosyncraticaly origina pieceof work does not display numerous anaogies with past work at
every juncture. Occasiondly this does occur -- eg. with Gaoiss work on the unsolvability in
radicas of the quintic. But it is very much the exception.

It might be argued that whereas andogy isimportant to mathematics, deduction from axioms
isthe defining qudity of mathematics; that deduction isinherently more essentid. But this does
not stand up to the evidence. Even in Gaoisswork, there is obvioudy some evidence of
andogical reasoning, say on the leve of theindividud steps of his proof. Although his overdl
proof strategy appears completely unrelated to what came before, the actual steps are not, taken
individudly, al that different from individua steps of past proofs. Anaogica reasoning is
ubiquitous, in the intricate details of even the most ingenioudy origina mathematica research.

And we must not forget Cauchy, one of the grest mathematicians despite his often doppy
treatment of logica deduction. Cauchy originated a remarkable number of theorems, but many of
his proofs were intuitive arguments, not deductions of the consequences of axioms. It is not that
his proofs were explicitly more andogica than deductive -- they followed consistent deductive
lines of thought. But they did not proceed by rigoroudy deducing the consequences of some set
of axioms, rather they appeded frequently to the intuition of the reader. And thisintuition, or so
| dam, islargely andogica in nature.

It is clear that both deduction and andogy are ubiquitous in mathematics, and both are present to
highly varying degrees in the work of various mathematicians. It could be protested that
Cauchy's proofs were not really mathematicad -- but then again, this judgment may be nothing
more than areflection of the dominance of mathematical logic during the last century. Now we
say that they are not mathematical because they dontt fit into the framework of mathemeatical
logic, in which mathematicsis defined as the step-by- step deduction of the consegquences of
axioms. But they ook mathematica to anyone not schooled in the dogma of mathematicd logic.

In sum: it isfutile to try to separate the process of deduction of the consequences of axioms
from the process of analogy with respect to abstract structures. This istrue even in mathematics,
which isthe mogt blatantly deductive of dl human endeavors. How much moretrueisit in
everyday thought?

8.1 The Structure of Deduction

Let Sbeany set, and let 1={l1, |2, ..., In} beasubset of S, called the set of assumptions. Let
SN denote the Cartesian product SxSxSx...xS, taken N times. And let T={T1,T2,...,Tn} beaset of
transformations; that is, aset of functions each of which maps some subset of SN into some
subset of S. For instance, if S were a set of propositions, one might have Ti(x,y)=x and y.

Let usnow definethe set D(1,T) of dl dements of Swhich are derivablefrom the assumptions
| viathe transformations T. Firg of dl, it isclear that | should be a subset of D(1,T). Let uscal
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the dements of | the depth-zero dements of D(I,T). Next, what about eements of the form
x=Ti(A1,...,Am), for some i, where each A=l; for some j? Obvioudy, these eements are smple
transformations of the assumptions; they should be dements of D(I,T) aswell. Let uscdl these
the depth-one dements of D(1,T). Similarly, we may define an element x of Sto beadepth-n
eement of D(1,T) if x=Ti(Ax,...,Am), for somei, where each of the A« is a depth-p dement of
D(1,T), for some p<n. Findly, D(I,T) may then be defined as the st of al x which are depth-n
eements of D(I,T) for somen.

Deductive reasoning is nothing more or |ess than the congtruction of eements of D(1,T), given
| and T. If the T aretherules of logic and the | are some set of propositions about the world, then
D(l,T) isthe st of dl propogtions which are logicdly equivaent to some subset of 1. In this case
deduction is amatter of finding the logica consequences of 1, which are presumably a small
subset of thetotal set S of al propogtions.

8.2 Paraconsistency

Contemporary mathematical logic is not the only conceivable deductive system. In fact, |
suggest that any deductive system which relies centraly upon Boolean dgebra, without
ggnificant externd condraints, isnot even qualified for the purpose of generd menta
deduction. Boolean dgebrais very useful for many purposes, such as mathematica deduction. |
agree that it probably plays an important role in mental process. Buit it has a least one highly
undesirable property: if any two of the propositionsin | contradict each other, then D(I,T) isthe
entire sat S of al propositions. From one contradiction, everything is derivable.

The proof of thisisvery smple. Assume both A and -A. Then, surely A implies A+B. But
from A+B and -A, one may conclude B. Thisworks for any B. For instance, assume A="It istrue
that my mother lovesme'. Then -A="It is not true that my mother loves me'. Boolean logic
implies that anyone who holds A and -A -- anyone who has contradictory fedings about his
mother's affection -- aso, implicitly, holds that 2+2=5. For from "It is true that my mother loves
me" he may deduce "Either it is true that my mother loves me, or ese 2+2=5." And from "Either
it istrue that my mother loves me, or ese 2+2=5" and "It is not true that my mother loves me,"
he may deduce"2+2=5."

So: Boolean logic is fine for mathematics, but common sense tells us that human minds
contain numerous contradictions. Does a human mind redlly use a deductive system that implies
everything? It appears that somehow we keep our contradictions under control. For example, a
person may contradict himsdlf regarding abortion rights or the honesty of his wife or the ultimate
meaning of life-- and yet, when he thinks about theoretical physcs or parking his car, hemay
reason deductively to one particular conclusion, finding any contradictory conclusion ridiculous.

It might be that, dthough we do use the "contradiction-sensitive" deduction system of standard
mathematica logic, we carefully distinguish deductions in one sphere from deductionsin
another. That is, for example, it might be that we have separ ate deductive sysemsfor dedling
with physics, car parking, domestic reations, philosophy, etc. -- so that we never, in practice,
reason "A implies A+B", unless A and B are closdly rlated. If this were the case, a contradiction
in one realm would destroy only reasoning in that reslm. So if we contradicted oursalves when
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thinking about the meaning of life, then this might give us the ability to deduce any statement
whatsoever about other philosophica issues -- but not about physics or everyday life.

In his Ph.D. dissertation, daCosta (1984) conceived the idea of a paraconsistent logic, onein
which asingle contradictionin | does not imply that D(I,T)=S. Others have extended thisideain
various ways. Most recently, Avram (1990) has constructed a paraconsistent logic which
incorporates the "relevance logic” discussed in the previous paragraph. Propostions are divided
into classes and the inference from A to A+B isdlowed only when A and B arein the same
class.

| suggest that Boolean logic isindeed adequate for the purpose of common:sense deduction.
My defense of this pogition comesin two parts. Firs, | believe that Avronisbasicdly right in
saying that contradictions are dmost dways localized. To be precise, | hypothesize that amind
does not tend to form the digunction A+B unless %% (S((A%v)-SX(V)]-[ SH(BY%w)- St(W)] %% is
amal for some (v,w).

| do not think it is judtified to partition propositionsinto digoint sets and claim that eech entity
isrdevant only to those entities in the same set asiit. Thisyields an degant formd system, but of
coursein any categorization there will be borderline cases, and it is unacceptable to Smply
ignore them away. My approach is to define relevance not by a partition into classes but rather
using the theory of structure. What the formulation of the previous paragraph saysis that two
completdy unrelated entitieswill only rarely be combined in one logica formula

However, there is dways the possibility that, by afluke, two completdly unrelated entities will
be combined in some formula, say A+B. In this case a contradiction could spread from one
context to another. | suspect that thisis an actua danger to thought processes, athough certainly
arare one. It istempting to speculate that this is one possible route to insanity: a person could
dart out contradicting themselves only in one context, and gradually Snk into insanity by
contradicting themselves in more and more different contexts.

This brings us to the second part of the argument in favor of Boolean logic. What happens
when contradictions do arise? If acontradiction arises in ahighly specific context, doesit remain
there forever, thus invdidating al future reasoning in that context? | suspect that thisis possible.
But, aswill be eaborated in later chapters, | suggest that thisis rendered unlikely by the
overdlarchitecture of the mind. It isan error to suppose that the mind has only one center for
logical deduction. For al we know, there may be tens of thousands of different deductive
systemns operating in different parts of the brain, sometimes perhaps more than one devoted to the
same specidized context. And perhaps then, as Edelman (1987) has proposed in the context of
perception and mator control, those systems which fail to perform auseful function will
eventualy be destroyed and replaced. If a deductive system has the habit of generating arbitrary
propositions, it will not be of much use and will not last. Thisideaisrelaed to the automata
networks discussed in the final chapter.

Onething which is absolutdy dear from dl thisisthe following: if the mind does use

Boolean logic, and it does harbor the occasiona contradiction, then the fact that it does not
generate arbitrary statements has nothing to do with deductive logic. Thisis one important sense
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in which deduction is dependent upon generd structure of the mind, and hence implicitly on
other forms of logic such as andogy and induction.

8.3 Deduction Cannot Stand Alone

When deduction is formulated in the abstract, in terms of assumptions and transformation, it is
immediately apparent that deductive reasoning isincapable of sanding on its own. Inisolation, it
isusdess For why would there beintringc vaue in determining which x liein D(1,T)? Who
cares? The usefulness of deduction presupposes severd things, none of them trivid:

1. thelements of | must be accepted to possess sometypeof  vdidity.
2. it must be assumed that, if the dements of | are important
in this sense, then the dements of D(1,T) are dso vdid in this sense.
3. it mugt be the case that certain of the dements of D(I,T) are important in some sense.

Thefirgt requirement is the most straightforward. In mathematica logic, the criterion of
vdidity istruth. But this concept is troublesome, and it is not necessary for deduction.
Psychologicdly spesking, vaidity could just as well mean plausibility.

The second requirement is more subgtantia. After dl, how isit to be known that the dements
of D(I,T) will possess the desired properties? Thisis abig problem in mathematical logic. Using
predicate caculus, one can demondirate that if | isa set of true propositions, every stiatement
derivable from | according to the rules of Boolean agebrais dso true. But Boolean dgebraisa
very weak deductive system; it is certainly not adequate for mathematics. For nontrivid
mathematics, one requires the predicate caculus. And no one knows how to prove that, if | isa
et of true propogitions, every statement derivable from | according to the rules of predicate
cdculusistrue.

Godel proved that one can never demondrate the consistency of anysufficiently powerful,
conggtent forma system within that forma system. This means, essarntidly, thet if vaidity is
defined as truth then the second requirement given above can never be verified by deduction.

To be more precise if vdidity is defined astruth, let ussay T iscondgtent if it isthe case that
whenever dl the dements of | aretrue, dl the dements of D(1,T) are true. Obvioudy, in this case
consistency corresponds to the second requirement given above. Goddl showed that one can
never prove T is congstent using T. Then, given a deductive system (1,T), how can one
deductively demondtrate that T is consstent? -- i.e. that the second requirement given aboveis
fulfilled? One cannot do so using T, SO one must do so in some other deductive system, with a
system of trandformations T1. But if one uses T1 to make such a demonstration, how can one
know if T1 iscondgtent? If T1 isincons stent, then the demonstration means nothing, because an
in an incorsistent system one can prove anything whatsoever. In order to prove T1 is consstent,
one must invoke some T2. But in order to prove T2 is consstent, one must invoke some T3. Et
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cetera Theresult isthat, if vaidity is defined as truth, one can never use deduction to prove that
the results of agiven set of trandformations are vaid.

Y et we believe in mathematics -- why? By induction, by andogy, by intuition. We bdievein
it because, at bottom, it feels right. It's never led us wrong before, says induction. It worked in dl
these other, smilar, cases, 0 it should work here -- saysandogy. Even if validity is defined as
truth, arecourse to induction and andogy is ultimately inevitable.

If validity is defined, say, as plaughility, then the Stuation is even worse. Clearly, any true
datement is plausible, so that it's at least as hard to judtify plausible reasoning asit isto judtify
"certan” reasoning. And, furthermore, the very concept of "plaughbility” refers to induction and
andogy. In sum, | contend that, in generd and in specific cases, deduction isonly justifiable by
recour se to induction and analogy.

ANALOGY GUIDESDEDUCTION

Findly, let us consider the third requirement for the usefulness of deduction: certain of the
eements of D(1,T) must be somehow important. Otherwise deduction would Smply consst of
the haphazard generation of dements of D(I,T). Thisis not the case. In mathematics or in
everyday life, one wants to deduce things which are useful, beautiful, interesting, etc. This gives
rise to the question: how does one know how to find the important elements of D(1,T)?

It seems clear that thisis amatter of analogica reasoning. For instance, suppose one has a
particular entity x in mind, and one wants to know whether x is an element of D(I,T). Or suppose
one has a particular property Pin mind, and one wants to find an dement x of D(I,T) which has
this property. How does one proceed? To an extent, by intuition -- which isto say, to an extent,
one does not conscioudy know how one proceeds. But insofar as one makesconscious decisions,
one proceeds by congdering what has worked in the past, when dedling with an entity x or a
property P which issSmilar to the one under consideration.

For example, when studying mathemeatics, oneis given as exercises proofs which go very
much like the proofs one has seen in class or in the textbook. This way one knows how to go
about doing the proofs; one can proceed by seeing what was donein smilar cases. After one has
mestered this sort of exercise, one goes on to proofs which are less strictly anadogous to the
proofsin the book -- because one has grasped the subtler patterns among the various proofs; one
has seen, in general, what needs to be done to prove a certain type of theorem.

Above | argued that deduction is only judtifiable by analogy. Here the point is that deduction
isimpotent without analogy: that in order to use deduction to work toward any practica god,
one must be guided by anaogy. Otherwise one would have no idea how to go about constructing
agiven proof.

Thisis, | suggest, exactly the problem with automatic theorem provers. There are computer

programs that can prove Ssmple theorems by searching through D(1,T) according to avariety of
strategies. But until these programs implement some form of sophigticated andogy --

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 104

sysematicdly usng smilar srategies to solve smilar problems -- they will never proceed
beyond the most eementary leve.

USEFUL DEDUCTIVE SYSTEMS

Another consequence of this point of view isthat only certain deductive systems are of any
use: only those systems about which it is possible to reason by analogy. To be precise, let x and
y betwo dements of D(1,T), and let G 7(x) and G, 7(y) denote the set of dl proofsin (I,T) of x

and y respectively.
Definition 8.1: Let (1,T) be any deductive system, and take a>0.

Let U equa the minimum over dl v of the sum a%v%+B, where B isthe average, over dl
pairs (x,y) so that x and y are both in D(I,T), of the correlation coefficient between d« St(x%v)-
S(X),S(y%v)-St(v)] and di[Gi,1(X),G.1(y)]%. Then (1,T) isuseful to degree U.

The rdaive digance d[Gi,7(X),G.1(y)] isameasure of how hard it isto get aproof of x out of
aproof of y, or aproof of y out of aproof of x. If v were assumed to be the empty set, then
%0 (X%0V)- SH(X), X (y%ov)-SX(V)] - d[Gi,7(X),G,7(y)]% would reduce to %odi(X,y) -
d[Gi.7(X),G,1(y)]%. The usefulness U would be ameasure of how trueit isthat structurdly
amilar theorems have smilar proofs.

But in order for asystem to be useful, it need not be the case that structuraly smilar theorems
have smilar proofs. It need only be the case that there is some system for determining, given any
theorem x, which theoremsy are reasonablylikely to have amilar proofs. This system for
determining isv. In the metaphor introduced above in the section on contextud anaogy, v isa
codebook. A deductive system is useful if there is some codebook v so that, if one decodes x and
y usng v, the smilarity of the resulting messagesiis reasonably likely to be dose to the amilarity
of the proofs of x and y.

The congtant a measures how much the complexity of the codebook v figuresinto the
usefulness of the system. Clearly, it should count to some degree: if v is excessively complex
then it will not be much use as a codebook. Also, if v is excessvely complex then it is extremely
unlikdly that a user of the sysem will ever determinev.

Mathematicaly speaking, the usefulness of traditiona deductive systems such as Boolean
agebra and predicate caculus is unknown. Thisis not the sort of question that mathemetica
logic has traditionaly asked. Judging by the practical success of both systems, it might seem that
their ussfulnessisfairly high. But it should be remembered that certain parts of D(I,T) might
have amuch higher usefulness than others. Perhaps predicate ca culus on awholeis not highly
useful, but only those parts which correspond to mathematics as we know it.

It should also be remembered that, in redity, one must work with ds rather than d, and aso
with a subjective estimate of % %. Hence, in this sense, the subjective ussfulness of a deductive
system may vary according to who is doing the deducing. For instance, if a certain codebook v is
very complicated to me, then a deductive system which uses it will seem relatively usdessto me;
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whereas to someone who experiences the same codebook as simple, the system may be
extremdy useful.

DEDUCTION, MEMORY, INDUCTION

If the task of intelligence is essentidly inductive, where does deduction fit in? One way to
gpproach this question is to consgder a deductive system as aform of memory. Deduction may
then be understood as an extremely effective form of data compaction. Instead of storing tens of
thousands of different congtructions, one stores a sSmple deductive system that gener ates tens of
thousands of possible congtructions. To seeif agiven entity X isin this"memory” or not, one
determines whether or not X may be derived from the axioms of the system. And, with a
combination of deduction and analogy, one can determine whether the "memory” contains

anything possessing certain specified properties.

Of course, a deductive system is not formed to serve gtrictly as a memory. One does not
construct a deductive system whose theorems are precisdy those pieces of information that one
wants to store. Deductive systems are gener ative. They give rise to new condructions, by
combining things in unforeseesble ways. Therefore, in order to use a deductive system, one must
have faith in the axioms and the rules of transformation -- faith that they will not generate
nonsense, a least not too often.

How isthisfaith to be obtained? Either it mugt be "programmed in", or it must be arrived at
inductively. Al theorigts tend to implicitly assume that predicate caculus is inherent to
intelligence, that it is hard-wired into every brain. Thisis certainly atempting propogtion. After
dl, itisdifficult to see how an organiam could induce a powerful deductive system in the short
period of time dlotted to it. It is not hard to show that, given asufficiently large set of statements
X, one may adways congtruct a deductive system which yields these satements as theorems and
whichisapatternin X. But it seems unlikely that such a complex, abstract pattern could be
recognized very often. What the Al theoristsimplicitly suggest isthat, over along period of
time, those organisms which did recognize the pattern of deduction had a greater survivd rate;
and thus we have evolved to deduce.

This point of view is not contradicted by the fact that, in our everyday reasoning, we do not
adhere very closdly to any known deductive system. For ingtance, in certain Situations marny
people will judge "X and Y" to be more likely than "X". If told that " Joe smokes marijuand’, a
sgnificant proportion of people would rate "Joe has long hair and works in abank™ as more
likely than "Joe worksin abank”. It istrue that these people are not effectively gpplying Boolean
logic in their thought about the everyday world. But this does not imply that their minds are not,
on some deeper level, using logica deduction. | suspect that Boolean logic playsarolein
"common sensg’ reasoning asin deeper intuition, but that thisroleis not dominant: deduction is
mixed up with andogy, induction and other processes.

To summarize: recognizing that deductive systems are useful for data compaction and form
generation is one thing; exating deduction over al other forms of thought is quite another. There
IS No reason to assume that deduction is a "better”, "more accurate’ or "truer" mode of reasoning
than induction or analogy; and there is no reason to believe, as many Al theorists do, that

Get any book for freeon:  www.Abika.com



THE STRUCTURE OF INTELLIGENCE 106

deduction is the core process of thought. Furthermore, it seems very unlikely that deduction can
operatein agenera context without recourse to analogy. However, because deduction is so
effective in the context of the other mental processes, it may well be that deduction is essentid

to intdligence.

9

Per ception

9.0 The Perceptual Hierarchy

In accordance with the philosophy outlined in Chapter 5, | define perception as pattern
recognition. Pattern recognition is, of course, an extremely difficut optimization problem. In
fact, the task of recognizing dl the patternsin an arbitrary entity is 0 hard that no agorithm can
olveit exactly -- thisisimplied by Chaitin's (1987) agorithmic-information-theoretic proof of
Godd's Theorem. As usud, though, exact solutions are not necessary in practice. Oneis, rather,
concerned with finding a reasonably rapid and reliable method for getting fairly decent
gpproximeations.

| propose that minds recognize patterns according to amultilevel strategy. Toward thisend, |
hypothesize a hierarchy of perceptud levels, each level recognizing patternsin the output of the
level below it, and governed by the level immediatdly above it. Schematicaly, the hierarchy may
be understood to extend indefinitely in two directions (Fig. 4). It will often be convenient to,
somewhat arbitrarily, pick acertain level and cdl it the zero levd. Then, for n=...-3,-2,-1,0,
1,23...., theideaisthat level n recognizes patternsin the output of level n-1, and dso
meanipulates the pattern-recognition agorithm of leve n-1.

PHENOMENOLOGY AND PERCEPTION

Physicaly spesking, any particular mind can ded only with afinite ssgment of this hierarchy.
Phenomenologicdly speaking, amind can never know exactly how far the hierarchy extendsin
ether direction.

One may andyze consciousness as a process which moves from level to levd of the
perceptud hierarchy, but only within a certain restricted range. If the zero leve istaken to
represent the "average” level of consciousness, and consciousness resides primarily on levels
from -L to U, then the levels below
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-L represent perceptions which are generaly bel ow conscious perception. And,on the other hand,
the levels above U represent perceptions that are in some sense beyond conscious perception:
too abstract or general for consciousness to encompass.

Consciousness can never know how far the hierarchy extends, either up or down. Thusit can
never encounter an ultimate physica redlity: it can never know whether a perception comes from
ultimate redity or just from the next level down.

Perception and motor control might be defined as the link between mind and redlity. But this
isaone-gded definition. Earlier we defined inteligence by dividing the universeinto an
organism and an environment. From this "God's-ey€"’ point of view an organism's perceptua and
motor systems are the link between that organism and its environment. But from the internd
point of view, from the point of view of the conscious organism, there can be no true or ultimate
redlity, but only the results of perception.

Therefore, in asense, the result of perception is redity; and the study of perception isthe
study of the congtruction of externd redlity. One of the ams of this chapter and the next isto
give amodd of perception and motor control that makes sense from both points of view -- the
objective and the subjective, the God's-eye and the mind's-eye, the biologicd and the
phenomenologica.

INPUT VERSUS CENTRAL PROCESSING

Fodor (1983) has proposed that, as agenerd rule, there are a number of significant structura
differences between input systems and central processing systems. He haslisted nine
properties which are supposed to be common to all the input systems of the human brain: the
visud processing system, the auditory processing system, the olfactory and tectile processing
systems, etc.:

1. Input systems are domain specific: each one dedls only with acertain

specific type of problem.

2. Input systems operate regardless of conscious desires, their operation is mandatory.
3. The centrd processing systems have only limited accessto the

representations which input systems compute.

4. Input systems work rapidly.

5. Input systems do most of their work without reference to what is going on

in the central processing systems, or in other input systems.
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6. Input systems have "shdlow" output, output which is easily grasped by centra processing
systems.

7. Input systems are associated with fixed neurd architecture.
8. The development of input systems follows a certain characteristic pace
and sequence.

| think these properties are a very good characterization of the lower levelsof the perceptua
hierarchy. In other words, it gppears that the lower levels of the perceptua hierarchy are grictly
modularized Roughly spesking, say, levels-12 to -6 might be as depicted in Figure 5, with the
modular structure playing as great arole asthe hierarchica structure.

If, say, consciousness extended from levels -3 to 3, then it might be that the modules of levels
-12 to -6 melded together below the level of consciousness. In this case the results of, say, visud
and auditory perception would not present themselves to consciousness in an entirely
independent way. What you saw might depend upon what you heard.

HIERARCHY IN HUMAN VISUAL PERCEPTION

A decade and a haf ago, Hubel and Wiesdl (1988) demonstrated that the brain possesses
specific neura clusters which behave as processors for judging the orientation of line segments.
Since then many other equally specific visua processors have been found. It gppearsthat Area
17 of the brain, the primary visud cortex, which dedls with relatively low-leve vison
processing, is composed of varioustypes of neurona clusters, each type corresponding to a
certain kind of processing, e.g. line orientation processing.

And, aswdll as perhaps being organized in other ways, these clusters do appear to be
organized in levels. At the lowest leve, in the reting, gradients are enhanced and spots are
extracted -- smple mechanica processes. Next come Smple moving edge detectors. The next
leve, the second level up from the reting, extracts more sophigticated information from the first
leved up -- and so on. Admittedly, little is known about the processes two or more levels above
theretina It isclear (Uhr, 1987), however, that there isavery prominent hierarchica structure,
perhaps supplemented by more complex forms of pardld information processing. For instance,
most neuroscientists would agree thet there are indeed "line processing” neura clusters, and
"shape processing” neura clugters, and that while the former pass their results to the latter, the
latter sometimes direct the former (Rose and Dobson, 1985).

And there is a so recent evidence that certain features of the retinal image are processed in
"sets of channels' which proceed severd levels up the perceptud hierarchy without intersecting
each other -- eg. asat of channdsfor color, aset of channesfor stereopogtion, etc. Thisis
modular perception a alevel lower than that considered by Fodor. For instance, Mishkin et a
(1983) have concluded from alarge amount of physiologica datathat two mgjor pathways pass
through the visua cortex and then diverge in the subsequent visua areas. one pathway for color,
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shape and object recognition; the other for motion and spatia interrdations. The firsg windsup in
the inferior tempord areas; the second leads to the inferior parietal aress.

And, on amore detailed level, Regan (1990) reviews evidence for three color channdsin the
fovea, around six spatid frequency channels from each retind point, around eight orientation
channels and eight stereomotion channels, two orthree stereoposition channds, three flicker
channels, two changing-sze channdls, etc. He investigates multiple sclerosis by looking at the
leve of the hierarchy -- well below consciousness -- a which the various sats of channels
intersect.

PARALLEL HIERARCHICAL COMPUTER VISION

If one needs to compute the local properties of avisua scene, the best strategy isto hook up a
large pardld array of smple processors. One can Ssmply assign each processor to asmal part of
the picture; and connect each processor to those processors deding with immediately
neighboring regions. However, if one needs to compute the overdl globa properties of visud
information, it seems best to supplement this arrangement with some sort of additional network
gructure. The pyramidal architecture (Fig. 6) is one way of doing this.

A pyramida multicomputer is composed of a number of levels, each one connected to the
levesimmediady above and beow it. Each level conssts of apardle array of processors, each
one connected to 1) afew neighboring processors on the sameleve, 2) one or possibly afew
processors on the level immediately above, 3) many processors on the level immediately below.
Each level has many fewer processors than the one immediately below it. Often, for instance, the
number of processors per level decreases exponentidly.

Usudly the bottom layer is vagudly retina-like, collecting raw physica data. Then, for
ingtance, images of different resolution can be obtained by averaging up the pyramid: assgning
each processor on level n adistinct set of processors on level n-1, and indructing it to average
the values contained in these processors.

Or, say, the second level could be used to recognize edges; the third level to recognize shapes,
the fourth level to group dementary shapes into complex forms; and the fifth level to compare
these complex forms with memory.

Stout (1986) has proved that there are certain problems -- such asrotating a scene by pi
radians -- for which the pyramida architecture will perform little better than its base level would
al by itsdlf. He considers each processor on level n to connect to 4 other processorson leve n, 4
processors on level n-1, and one processor on level n+1. The problem isthat, in this arrangement,
if two processors on the bottom level need to communicate, they may have to do so by either 1)
passing a message step by step across the bottom level, or 2) passing amessage dl the way up to
the highest level and back down.

However, Stout aso shows thet this pyramidd architecture is optima for so-called "perimeter-

bound" problems -- problems with nontrivid communication requirements, but for which each
sguare of s2 processors on the base leve needs to exchange only O(s) bits of information with
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processors outside that square. An example of a perimeter-bound problem islabding dl the
connected components of an image, or finding the minimum distance between one component
and another.

In sum, it ssemsthat strict pyramidd architectures are very good at solving problems which
require processing that is global, but not too globa. When atask requires an extreme amount of
globa communications, a pardle architecture with greater interconnection is caled for -- e.g. a
"hypercube’ architecture.

Thinking more generdly, Levitan et d (1987) have congtructed a three-leve "pyramidd”
pardle computer for vison processing. As shown in Figure 7, the bottom level dedlswith
sensory data and with low-leve processing such as segmentation into components. The
intermediate level takes care of grouping, shape detection, and so forth; and the top level
processes thisinformation "symbolicaly", congtructing an overdl interpretation of the scene.
The base level isa512x512 square array of processors each doing exactly the same thing to
different parts of theimage; and the middle leve is composed of a 64x64 square array of
relatively powerful processors, each doing exactly the same thing to different parts of the base-
leve aray. Findly, thetop leve contains 64 very powerful processors, each one operating
independently according to programs written in LISP (the standard Al programming language).
The intermediate level may aso be augmented by additiona connections, e.g. a hypercube
architecture.

Thisthree-level perceptua hierarchy appears be an extremely effective approach to computer
vison. Itisnot agrict pyramidd architecture of the sort considered by Stout, but it retains the
basic pyramida structure despite the presence of other processes and interconnections.

ISPERCEPTION JUST A BAG OF TRICKS?

Insum, itisfarly clear that human perception works according to a"perceptud hierarchy"” of
some sort. And it isaso plain that the perceptud hierarchy isahighly effective way of doing
computer vison. However, thereis no generd understanding of the operation of this hierarchy.
Many theorigts, such at Uttal (1988), suspect that such a general understanding may be
impossible -- that perception is nothing more than alargely unstructured assortment of very
clever tricks. In 1965, Hurvich et d made the following remark, and it is dtill gpt: "the reader
familiar with the visud literature knows that thisis an area of many laws and little order”
(p.101).

| suggest thet there isindeed an overal structure to the process. This does not rule out the
possibility that a huge variety of idiosyncratic tricks are involved; it just implies that these tricks
are not 100% of the story. The structure which | will proposeis abstract and extremely generd,;
and | am aware that this can be alimitation. As Utta has observed,

Perceptua psychophysics has long been characterized by experiments specificto a

microscopically oriented theory and by theories that either deal with anarrowly defined data set
at one extreme or, to the contrary, agloba breadth that is so great that data are virtualy
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irrdlevant to theirconstruction. Theories of this kind are more points of view than analyses.
(p-290)

Utta would certainly put the theory given here in the "more point of view than andyss’
category. However, it seemsto methat, if the gap between psychophysica theory and datais
ever to be bridged, the first step is a better point of view. And smilarly, if the gap between
biologicd vision and computer vision is ever to be closed, we will need more than just superior
technology -- we will need new, insghtful generd idess. Therefore | fed thet, a thisstage, itis
absolutely necessary to study the abstract logic of perception -- evenif, in doing o, oneis
guided as much by mathematical and conceptua congderations as by psychophysica or other
data

9.1 Probability Theory

The branch of mathematics known as probability theory provides one way of making
inferences regarding uncertain propositions. But it isnot a priori clear that it isthe only
reasonable way to go about making such inferences. Thisisimportant for psychology because it
would be nice to assume, as aworking hypothess, that the mind uses the rules of probability
theory to processits perceptions. But if the rules of probability theory were just an arbitrary
selection from among a disparate set of possible schemes for uncertain inference, then there
would be little reason to place faith in this hypothess.

Higtoricaly, mogt attempts to derive generd laws of probability have been "frequentist” in
nature. According to this approach, in order to say what the statement “the probability of X
occurring in Stuation E is 1/3" means, one mugt invoke awhole "ensamble" of stuations. One
must ask: if | selected an Stuation from among an ensemble of n Stuations "identicd™ to E, what
proportion of the time would X be true? If, as n tended toward infinity, this proportion tended
toward 1/3, then it would be valid to say that the probability of X occurring in Stuation E is 1/3.

In some cases this gpproach isimpressively direct. For instance, consider the proposition:
"The face showing on the far ax-gded die | am about to toss will be either atwo or athree".
Common sense indicates that this proposition has probability 1/3. And if one looked a alarge
number of Smilar Stuations -- i.e. alarge number of tosses of the same die or "identica™ dice --
then one would indeed find that, in the long run, atwo or athree came up 1/3 of thetime.

But often it is necessary to assign probabilities to unique events. In such cases, the frequency
interpretation has no meaning. This occurs particularly often in geology and ecology: one wishes
to know the relative probakilities of various outcomes in a Stuaion which is unlikely ever to
recur. When the problem has to do with a bounded region of space, say afores, it ispossible to
judtify this sort of probabiligtic reasoning using complicated manipulaions of integrd caculus.
But what isredly required, in order to justify the generalgpplication of probability theory, is
some sort of proof that the rules of probability theory are uniquely wel-suited for probable
inference.

Richard Cox (1961) has provided such a proof. First of dl, he assumesthat any possiblerule
for assgning a " probability” to a proposition must obey the following two rules:
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The probability of an inference on given evidence determines the probability of its
contradictory on the same evidence (p.3)

The probability on given evidence that both of two inferences are true is determined by their
separate probabilities, one on the given evidence, the other on this evidence with the additiona
assumption that the firgt inference is true (p.4)

The probakility of apropostion on certain evidence is the probability thet logicaly should be
assigned to that proposition by someone who is aware only of this evidence and no other
evidence. In Boolean notation, the first of Cox's rules says amply that if one knowsthe
probability of X on certain evidence, then one can deduce the probability of -X on that same
evidence without using knowledge about anything ese. The second rule saysthet if one knows
the probability of X given certain evidence E, and the probahility that Y istrue given EX, then
one can deduce the probability that Y is true without using knowledge about anything ese.

These requirements are hard to dispute; in fact, they don't seem to say very much. But their
amplicity is mideading. In mathematica notation, the first requirement says that POX'Y %E)=
F(X%E),(Y%XE)], and the second requirement says that P(- X %E)=f[P(X%E)], where F and f
are unspecified functions. What is remarkable is that these functions need not remain
unspecified. Cox has shown that the laws of Boolean agebra dictate specific formsfor these
functions.

For ingtance, they imply that G[P(XY %E)] = CG[P(X%E)]G[P(Y %XE)], where C is some
congant and G is some function. Thisisalmost a proof that for any measure of probability P,
POXY %E)=P(X%E)P(Y %XE). For if one sats G(x)=x, thisrule isimmediate. And, as Cox points
out, if P(X%E) measures probability, then so does G[P(X%E)] -- at least, according to the two
axioms given above. The congtant C may be understood by setting X=Y and recalling that
XX=X according to the axioms of Boolean dgebra. It follows by smple dgebrathat C =
G[P(X%XE)] -- i.e, Cisthe probability of X on the evidence X, the numerica vaue of
certainty. Typicdly, in probability theory, C=1. But thisis a convention, not alogicd
requirement.

Asfor negation, Cox has shown that if P(X)=f[P(-X)], Boolean algebra leads to the formula
Xr+f(X)]r=1. Given this, we could leave r unspecified and use P(X)r asthe symbol of
probability; but, following Cox, let ustake r=1.

Cox's andysistdls usin exactly what sense the laws of probability theory are arbitrary. All
the laws of probability theory can be derived from the rules P(X%E)=1- P(- X%E),
P(XY %E)=P(X%E)P(Y %XE). And these rules areessentidly the only ways of dedling with
negation and conjunction that Boolean agebraalows. So, if we accept Boolean dgebraand
Cox's two axioms, we accept probability theory.

Findly, for amore concrete perspective on these issues, let us turn to the work of Krebs,
Kacanik and Taylor (1978). These biologists studied the behavior of birds (greet tits) placed in
an aviary containing two machines, each consisting of a perch and afood dispenser. One of the
machines dispenses food p% of the timesthat its perch is landed on, and the other one dispenses
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food g% of the times that its perch is landed on. They observed that the birds generdly vist the
two machines according to the optima trategy dictated by Bayes rule and Laplace's Principle of
Indifference -- a strategy which isnot particularly obvious. Thisis astrong rebutta to those who
raise philosophica objections againgt the psychologica use of probability theory. After dl, if a
bird's brain can use Bayesan satistics, why not a human brain?

BAYES RULE

Assume that one knows that one of the propositions Y1,Y2,...,Yn istrue, and that only one of
these propositions can possibly be true. In mathematica language, this means that the collection
{Y1,...,Yn) isexhaustive and mutually exclusive. Then, Bayes rule says that

P(Y n)P(X%Y )
P(Y n%6X) = Y660696%66%66%6%6%6%6%6%6%6%
P(Y )P(XY6Y 1)+...+P(Y ) P(X%6Y )

Initsdf thisruleis unproblematic; it is a Smple consequence of the two rules of probable
inference derived in the previous section. But it lends itself to controversid gpplications.

For instance, suppose Y1 isthe event that a certain sar system harborsintelligent lifewhich is
fundamentaly dissmilar from us, Y2 isthe event that it harborsintdligent lifewhichis
fundamentdly smilar to us, and Ys isthe event that it harbors no intdligent life a dl. Assume
these events have somehow been precisaly defined. Suppose that X is a certain sequence of radio
waves which we have received from that star system, and that one wants to compute P(Y 2%6X):
the probability, based on the message X, that the system has intelligent life which is
fundamentaly smilar to us. Then Bayes rule gpplies {Y1,Y2,Y3s} isexhaudive and mutualy
exclusive. Suppose that we have a good estimate of P(X%Y 1), P(X%Y 2), and P(X%Y 3): the
probability that an intelligence dissmilar to us would send out message X, the probability that an
intelligence amilar to us would send out message X, and the probahility that an unintelligent sar
system would somehow emit message X. But how do we know P(Y1), P(Y2) and P(Y3)?

We cannot deduce these probabilities directly from the nature of messages received from star
systems. So where does P(Yi%X) come from? This problem,at least in theory, makes the
business of identifying extraterrestrid life extremdy tricky. One might argue that it makes it
impossible, because the only things we know about stars are derived from e ectromagnetic
"messages’ of onekind or another -- light waves, radio waves, etc. But it seems reasonable to
assume that spectroscopic information, thermodynamic knowledge and so forth are separate from
the kind of message-interpretation we are talking about. In this case there might be some kind of
apriori physcochemica estimate of the probability of inteligent life, Smilar intdligent life, and
so forth. Carl Sagan, among others, has attempted to estimate such probabilities. The point is that
we need somekind of prior estimate for the P(Yi), or Bayes ruleis usdess here.

Thisexampleisnot atypica. In generd, suppose that X isan effect, and { Yi} isthe set of
possible causes. Then to estimate P(Y 1%X) isto estimate the probability that Y1, and none of the
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other Yi, isthe true cause of X. But in order to estimate this using Bayes rulg, it is not enough to
know how likely X isto follow from Yi, for each i. One needs to know the probabilities P(Yi) --
one needs to know how likely each possible cause is, in generd.

One might suppose these problems to be a shortcoming of Bayes rule, of probability theory.
But thisis where Cox's demondtration proves invauable. Any set of rules for uncertain reasoning
which satiffy histwo smple, self-evident axioms -- must necessarily lead to Bayes rule, or
something essentidly equivaent with afew G's and r's floating around. Any reasonable set of
rules for uncertain reasoning must be essentidly identical to probability theory, and must
therefore have no other method of deducing causes from effects than Bayes rule.

The perceptive reader might, at this point, accuse me of inconsstency. After dl, it was
observed above that quantum events may be interpreted to obey adifferent sort of logic. Andin
Chapter 8 | raised the possibility that the mind employs aweaker "paraconsstent” logic rather
than Boolean logic. How then can | amply assume that Boolean agebrais applicable?

However, the inconsstency is only apparent. Quantum logic and paraconsstent logic are both
weeker than Boolean logic, and they therefore cannot not lead to any formulas which are not aso
formulas of Boolean logic: they cannot improve on Bayes rule.

So how do we assign prior probabilities, in practice? It is not enough to say that it comes
down to ingtinct, to biological programming. It is possible to say something about how this
programming works.

THE PRINCIPLE OF INDIFFERENCE

Laplaces "Principle of Indifference” satesthat if aquestion is known to have exactly n
possible answers, and these ansvers are mutudly exclusive, then in the absence of any other
knowledge one should assume each of these answers to have probability 1/n of being correct.

For ingtance, suppose you were told that on the planet Uxmylargg, thepredominant intelligent
lifeform is ether blue, green, or orange. Then, according to the Principle of Indifference, if this
were the only thing you knew about Uxmylargq, you would assign a probability of 1/3 to the
datement that it is blue, aprobability of 1/3 to the Statement that it is green, and a probability of
1/3 to the statement that it is orange. In generd, according to the Principle of Indifference, if one
had no specific knowledge about the n causes{Y1,...,Yn} which gppear in the above formulation
of Bayes rule, one would assign a probability P(Yi)=1/n to each of them.

Cox himsdf appears to oppose the Principle of Indifference, arguing that “the knowledge of a
probability, though it is knowledge of aparticular and limited kind, is il knowledge, and it
would be surprising if it could be derived from... complete ignorance, asserting nothing”. Andin
generd, that is exactly whet the Principle of Indifference does: supplies knowledge from
ignorance. In certain specific cases, it may be proved to be mathematically correct. But, asa
generd rule of uncertain inference, it is nothing more or less than away of getting something out
of nothing. Unlike Cox, however, | do not find this surprising or undesirable, but rather exactly
what the Stuation calsfor.
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9.2 The Maximum Entropy Principle

If the Principle of Indifference tells us what probabilities to assgn given no background
knowledge, what is the corresponding principle for the case when one does have some
background knowledge? Seeking to answer this question, E.T. Jaynes studied the writings of J.
Willard Gibbs and drew therefrom arule caled the maximum entropy principle. Like the
Principle of Indifference, the maximum entropy principleis provably correct in certain specid
cases, but in the generd case, judtifying it or goplying it requires ad hoc, something-out- of-
nothing assumptions.

The garting point of the maximum entropy principle is the entropy function

H(px,...,pn) = - [palogpz + palogpz + ... + palogpn],

where {Yi} isan exhaustive, mutudly exclusve collection of events and pi=P(Yi). Thisfunction
firs emerged in the work of Boltzmann, Gibbs and other founders of thermodynamics, but its
true significance was not comprehended until Claude Shannon published The Theory of
Communication (1949). It isameasure of the uncertainty involved in the distribution { pi} .

The entropy is dways postive. If, say, (pu,...,pn)=(0,0,1,..,0,0,0), then the entropy H(px,...,pn) is
zexo -- because this sort of digtribution has the minimum possible uncertainty. It is known which
of the Yi isthe case, with absolute certainty. On the other hand, if (pa,...,pn)=(1/n,1/n,...,1/n), then
H(px,...,pn)=logn, which is the maximum possible value. This represents themaximum possible
uncertainty: eech possbility isequdly likely.

The maximum ertropy principle sates that, for any exhaudive, mutudly exclusve st of
events (Y1,...,Yn), the most likely probability digtribution (pa,...,pn) with respect to a given set of
constraintson the i isthat digtribution which, anong dl those that satisy the congtraints, has
maximum entropy. The "condraints' represent particular knowledge about the Situation in
question; they are what distinguishes one problem from another.

For instance, what if one has absolutely no knowledge about the various posshilities Yi?
Then, where p=P(Y'i), can we determine the "most likely" digtribution (pu,...,pn) by finding the
digtribution that maximizes H(p,...,pn)? It is easy to see that, given no additiona condraints, the
maximum of H(p,...,pn) occurs for the distribution (pz,...pn)= (1/n,/n,...,1/n). In other words,
when there is no knowledge whatsoever about the Yi, the maximum entropy principle reducesto
the Principle of Indifference.

MAXIMUM ENTROPY WITH LINEAR CONSTRAINTS

In thermodynamicsthe Yi represent, roughly speeking, the different possible regions of space
in which amolecule can be; pi is the probability that arandomly chosen moleculeisin region Yi.
Each vector of probabilities (pu,...,pn) isacertain distribution of molecules amongst regons. The
question is, what isthe most likely way for the molecules to be distributed? One assumes that
one knows the energy of the distribution, which is of the form E(p,...,pn)=C1pa+...+Cnpn, where
the{ci} are congtants obtained from basic physical theory. That is, one assumes that one knows
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an equation E(pa,...,pn)=K. Under this assumption, the answer to the question is. the most likely
(p1,...,pn) isthe one which, among al those possihilities that satisfy the equation E(px,...,pn)=K,
maximizes the entropy H(p,...,pn). There are severa other methods of obtaining the most likely
digtribution, but thisis by far the easiest.

What isremarkable isthat thisis not just an degant mathematica festure of classca
thermodynamics. In order to do the maximum entropy principle justice, we should now consider
its gpplication to quantum density matrices, or radio astronomy, or numericd linear algebra. But
thiswould take ustoo far afield. Instead, let us consider Jayness "Brandeis dice problem”, a
puzzle both smple and profound.

Congder asix-sded die, each sde of which may have any number of spots between 1 and 6.
The problem is (Jaynes, 1978):

suppose [this] die has been tossed N times, and we are told only that the average number of
spots up was not 3.5, as we might expect from an 'honest’ die but 4.5. Given this information,
and nothing else, what probability should we assign to i spots on the next toss? (p.49)

Let Yi denote the event that the next tossyiddsi spots; let p=P(Yi). The information we have
may be expressed as an equation of the formA(py,...,pn)=4.5, where A(pa,...,pn)=(pa+...+pn)/nis
the average of the pi. This equation says. whatever the most likely digtribution of probabilitiesis,
it must yield an average of 4.5, which iswhat we know the average to be.

The maximum entropy principle says. given that the average number of spots up is4.5, the
most likely distribution (px,...,pn) isthe one that, among al those satisfying the congtraint
A(ps,...,pn)=4.5, maximizes the entropy H(px,...,pn). This optimization problem is easly solved
using Lagrange multipliers, and it has the gpproximate solution (p,...,pn) = (.05435, .07877,
11416, .16545, .23977, .34749). If one had A(px,...,pn)=3.5, the maximum entropy principle
would yield the solution (p,...,pn)=(1/6, 1/6, 1/6, 1/6, 1/6, 1/6); but, as one would expect,
knowing that the average is 4.5 makes the higher numbers more likely and the lower numbers
lesslikely.

For the Brandeis dice problem, asin the case of classca thermodynamics, it is possible to
prove mathematically that the maximum entropy solution isfar more likdly than any other
solution. And in both these instances the maximization of entropy appears to be the most
efficacious method of locating the optimal solution. The two Stuations are extremdy similar:
both involve essentialy random processes (dice tossing, molecular motion), and both involve
linear congtraints (energy, average). Here the maximum entropy principleis a its best.

MAXIMUM ENTROPY ASA GENERAL RULE OF INFERENCE

The maximum entropy principle is most gppeding when one is dedling with linear condraints.
Thereisasmple, straightforward proof of its correctness. But when talking about the generd
task of intelligence, we are not necessarily restricted to linear congtraints. Evans (1978) has
attempted to surmount this obstacle by showing that, given any congtraint F(px,...,pn)=K, the
overwhdmingly mogt likely vaues pi=P(Yi) may be found by maximizing
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H(p,....pn) - H(K1,....kn) = prlog(puka) + ... + prlog(p/kn)

where k=(kz,kz,...,kn) is some "background distribution”. The trouble with this approach is that
the only known way of determining k is through a complicated sequence of caculations
involving various ensembles of events.

Shore and Johnson (1980) have provided an aternate approach, which has been refined
congderably by Skilling (1989). Extending Cox's proof that probability theory isthe only
reasonable method for uncertain reasoning, Shore and Johnson have proved that if thereis any
reasonably genera method for assigning prior probabilities in Bayes Theorem, it has to depend
in acertain way upon the entropy. Here we will not require dl the mathematical details; the
generd ideawill suffice,

Where D isasubset of {Yi}, and Cisaset of congraints, let f{D%C] denote the probability
digtribution assigned to the domain D on the basis of the congtraints C. Let m={ m,n,...mn}
denote some et of "background information™ probakilities. For instance, if one actually has no
backgroundinformation, one might want to implement the Principle of Indifference and assume
m=1/n, for al i.

Assume f[D%C] is intended to give the most likely probability distribution for D, given the
congraints C. Then one can derive the maximum entropy principle from the following axioms

Axiom I: Subset Independence

If congtraint Cz gppliesin domain D1 and congtraint Cz gppliesin domain Dz, then
f[D1%C1] % [D2%6C2] = f[D1%D2%C1%C>]. (Bascdly, this meansthat if the condraints involved
do not interrelate D1 and Dy, neither should the answer). Thisimplies that f{D%C] can be
obtained by maximizing over asum of the form S(p,m)=mQ(p1)+...+mMQ(pn), where Q is some
function.

Axiom |I: Coordinate Invariance

Thisisatechnica requirement regarding the way that f[(p,...,pn)%C] relates to
fl(p/au,....,pr/gn)%CJ: it Sates that if one expresses the regions in a different coordinate system,
the probabilities do not change. It implies that S(p,m)=mQ(py/me)+...+MQ(pn/mn).

Axiom II1: System Independence

Philosophicaly, thisisthe crucid requirement. "If aproportion g of a population has a certain
property, then the proportion of any sub-population having that property should properly be
assigned as q.... For example, if 1/3 of kangaroos have blue eyes... then [in the absence of
knowledge to the contrary] the proportion of |&ft-handed kangaroos having blue eyes should be
/3"

It can be shown that these axioms imply that f[Y %C] is proportiond to the maximum of the
entropy H(ps,...,pn) subject to the congtraints C, whatever the congtraints C may be (linear or
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not). And since it must be proportiond to the entropy, one may aswell take it to be equd to the
entropy.

These axioms are reasonable, though nowhere near as compelling as Cox's sunningly smple
axiomsfor probable inference. They are not smply mathematicd requirements, they have agreat
ded of philosophical substance. What they do not tell you, however, is by what amount the most
likely solution f[Y%C] is superior to al other solutions. This requires more work.

More precisaly, one way of summarizing what these axioms show is asfollows. Let
m=(,...,IMn) be some vector of "background” probabilities. Then f[D%C] must be assigned by
maximizing the function

S(p,m)=[p1-mu-palog(py/mu)] +...+[pn-mh-pnl og(pr/mm)].

Evans has shown that, for any congtraint C, there is some choice of m for which the maximum
entropy principle gives an digribution which is not only correct but dramaticaly more likely
than any other digribution. It isimplicit, though not actudly stated, in hiswork that given the
correct vector (m,...,mn), the prior probabilities{pi} in Bayes formulamust be given by

pi = exp[aS/Z],

where S= S(p,m) as given above, Z=exp(aS)/[n(p1pz...pn)1/2], and ais aparameter to be discussed
below. Skilling has pointed out that, in every case for which the results have been caculated for
any (m,...,mn), with linear or nonlinear condraints, this same formula has been the result. He

has given a particularly convincing example involving the Poisson digtribution.

In sum: the maximum entropy principle appears to be a very reasonable genera method for
estimating the best prior probabilities; and it often seems to be the case that the best prior
probabilities are consderably better than any other choice. Actudly, none of the details of the
maximum entropy method are essentid for our generd theory of mentality. What isimportant is
that, in the maximum entropy principle, we have awidely vdid, practicaly goplicable method
for estimating the prior probabilities required by Bayes Theorem, given a certain degree of
background knowledge. The existence of such a method implies the possibility of a unified
treatment of Bayesian reasoning.

DEDUCTION, INDUCTION

In order to use Bayes rule to determine the P(Yi%X), one must know the P(X%Y), and one
must know the P(Yi). Determining the P(X%Y') is, | will propose, afundamentdly deductive
problem; it is essentidly a matter of determining a property of the known quantity Yi. But the
P(Yi) are adifferent matter. The maximum entropy principle is remarkable but not magical: it
cannot manufacture knowledge about the P(Yi) where there isn't any. All it can do iswork with
given congraints C and given background knowledge m, and work these into a coherent overal
guess at the P(Yi). In generd, the background information about these probabilities must be
determined by induction. In this manner, Bayes rule employs both inductive and deductive
reasoning.
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THE REGULARIZATION PARAMETER

It is essentid to note that the maximum entropy method is not entirely specified. Assuming the
formulas given above are accurate, there is fill the problem of determining the parameter a. It
appearsthat thereisno way to assign it auniversa vaue once and for dl -- its vdue must be st
in a context-specific way. So if the maximum entropy principle is used for perception, the value
of amugt be st differently for different perceptud acts. And, furthermore, it seemsto me that
even if the maximum entropy principleis not acentral as| am assuming, the problem of the
parameter ais dill rlevant: any other generd theory of prior probability estimation would have
to giveriseto agmilar dilemma

Gull (1989) has demondtrated that the parameter amay be interpreted as a "regularizing
parameter”. If aislarge, prior probabilities are computed in such away that distributions which
are far from the background model m are deemedrdatively unlikely. But if aisvery smdl, the
background modd is virtudly ignored.

So, for ingtance, if there is no real background knowledge and the background modd mis
obtained by the Principle of Indifference, the Sze of a determines the tendency of the maximum
entropy method to assign a high probability to distributionsin which al the probabilities are
about the same. Setting a high would be "over-fitting”. But, on the other hand, if mis derived
from red background knowledge and the Sgnd of which the Yi are possible explanationsis very
"noisy,” then alow awill cause the maximum entropy principle to yied an optima distribution
with agreat ded of random oscillaion. Thisis "under-fitting". In generd, one has to keep the
parameter asmal to get any use out of the background information m, but one has to make it
large to prevent the maximum entropy principle from paying too much atention to chance
fluctuations of the data

BAYESIAN PARAMETER ESTIMATION

Asan dterndive to setting the parameter a by intuition or ad hoc mathematica techniques,
Gull has given amethod of usng Bayesan saidics to esimate the most likely vaue of afor
particular p and m. Often, asin radioastronomica interferometry, thistactic or Smpler versons
of it gppear to work well. But, as Gull has demonstrated, vision processing presents greater
difficulties. He tried to use the maximum entropy principle to turn blurry pictures of awoman
into accurate photograph-like images, but he found that the Bayesian derivation of ayielded
farly unimpressve results

He devisad an ingenious solution. He used the maximum entropy principle to take the results
of a maximum entropy computation using the value of aarrived a by the Bayesan method --
and get anew background distribution m'=(n',...,m»’). Then he gpplied the maximum entropy
principle using this new background knowledge, m'. This yielded beautiful results -- and if it
hadn't, he could have gpplied the same method again. Thisisyet another example of the power
of hierarchica structures to solve perceptud problems.
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Of course, one could do this over and over again -- but one has to stop somewhere. At some
level, one Smply hasto st the vaue of abased on intuition, based on what vaue a usually has
for thetype of problem oneis consdering. Thisis planly a matter of induction.

In generd, when designing programs or machines to execute the maximum entropy principle,
we can set a by tria and error or common sense. But this, of course, meansthat we are using
deduction, anadlogy and induction to set a. | suggest that Smilar processes are used when the
mind determines ainternaly, unconscioudy. This hypothes's has some interesting consequences,
asweshal see.

As cautioned above, if the maximum entropy method were proved completely incorrect, it
would have no effect on the overal moded of mind presented here -- so long as it were replaced
by areasonably smple formula, or collection of formulas, for helping to compute the priorsin
Bayes formula; and so long as this formula or collection of formulas was reasonably amenable
to inductive adjustment. However, | do not foresee the maximum entropy principle being
"disproved” in any significant sense. There may be indeed be psychologica systems which have
nothing to do with it. But the generd idea of filling in the gaps in incomplete data with the "most
likely" vaues seems S0 obvious asto beinevitable. And the idea of usng the maximum entropy
values -- the vadues which "assume the least”, the most unbiased values -- seemsamost as
natura. Furthermore, not only isit conceptudly attractive and intuitively attractive -- it has been
shown repeatedly to work, under various theoretical assumptions and in various practica
gtuations.

9.3 The Logic of Perception
Now, let usreturn to the perceptua hierarchy as briefly discussed in Section 9.0. | propose
that this hierarchy is composed of a network of processors, each one of which operates

primarily asfollows

1. Takein aset of entities condgsting of simuli, patternsin stimuli, patternsin patterns in simuli,
etc.

2. Use Bayes rule and the maximum entropy principle (or some other tool for determining

priors) -- perhaps aded by induction, deduction and andogy - to obtain asmdl set of most likely
"interpretations’ of what its input represents.

3. Seek to recognize the most meaningfully complex approximate patternsin these
interpretations. Where %x% is the minimum complexity assgned to x by any processor that
inputs to processor P, processor P should use % %% as its measure of complexity.

4. Output these newly recognized patterns, dong with perhaps portions of its input.

Step 3isbasicdly aform of Occam's razor: it sates that the mind looks for the smplest
interpretation of the data presented to it.
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On lower leves, this pattern recognition will have to be severdly limited. Processors will have
to be redtricted to recognizing certain types of patterns -- e.g. lines, or smple shapes -- rather
than executing the optimizations involved in pattern recognition over a generd space of
functions. Thisis smilar to the Situation considered in Chapter 3, when we discussed
"subdtitution machines"” A subgtitution machine was a very specid kind of pattern, but it turned
out that much more genera types of patterns could be formed from hier ar chies of subtitution
machines. Here we have a hierarchy of redtricted pattern recognizers, which asawhole is not
nearly so restricted, because it dedls routindy with patternsin patterns, patternsin patternsin
patterns, and so on.

And what about the "aid" provided to Bayes rulein Step 2? This aso will have to be severely
restricted on the lower levels, where speed is of the essence and access to long-term memory is
limited. For instance, calculating the P(X%Y i) isamatter of deduction; and on lower levelsthis
deduction may be carried out by rigid "hardware' routines, by fixed programs specific to certain
types of X and Yi. But asthe level becomes higher, so does the chance that a processor will refer
to more genera, more intricate deductive systems to compute its P(X%Y). And, of course, one
cannot use agenerd, flexible deductive system without recourse to sophiticated andogica
reasoning and therefore to a Sructurdly associative memory.

Also, asthe level becomes higher and higher, the P(Yi) are more and more likely to be
caculated by sophidticated inductive processing rather than, say, Smple entropy maximization.
Technicaly spesking, induction may be used to provide a good background knowledge vector
{m,...,m} and meaningful congraints C. On the lower levels, the set of possible interpretations
Yi isprovided by the hardware. But on the higher levels, the Yi may be entirdly determined by
inductiont recal that the output of the genera induction adgorithm isa set of possible worlds.
Oncethe leve is high enough, no or essentidly no entropy maximization may be necessary; the
prior may be supplied entirdly or dmost entirely by induction. The regularization parameter a
may be set very low. On the other hand, intermediate levels may get some of the Yi from
induction and some from hardware, and entropy maximization may be invoked to a sgnificant
degree.

Also, the regularization parameter amay be adapted by induction to various degrees on
vaiouslevels. On very low leves, it is probably fixed. Around the level of consciousness, it is
probably very small, as dready mentioned. But on the intermediate levels, it may be adaptively
modified, perhaps according to some specidized implementation of the adaptation-of-
parameters scheme to be given in the following chapter.

In sum: on the lower levels of the perceptua hierarchy, experience does not affect processing.
The gructuraly associative memory is not invoked, and neither are any general paitern
recognition agorithms. Lower level processors gpply Bayes rule, usng hardware to set up the
{Yi} and to deduce the P(X%Y'i), and maximum entropy hardware to get the P(Yi). One result of
thisisolation isthat prior knowledge has no effect on low-leve pattern recognition -- e.g.
familiar shapes are not necessarily more easily perceived (Kohler, 1947).

On higher levels, however, the structurdly associative memory must be invoked, to aid with
the analogical reasoning required for estimating the P(X%Y i) ether by induction or according to
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aflexible deductive system. Also, as will be discussed below, induction is required to set up the
{Yi} -- which are not, as on lower levels, "wired in." And sophisticated parameter adaptation is
required to intelligently the regularization parameter aand, possibly, other parameters of the
process of prior estimation. The structure of the perceptud hierarchy is dtill important, but it is
interconnected with the structure of the centra processing systems related to induction,
deduction, analogy and parameteradaptation.

WHOLE AND PART

So far | have only discussed the progression of information upward through the perceptua
hierarchy. Upward progression builds more complex, comprehensve forms out of Smpler, more
gpecific ones. But downward progression is equally essentid.

It was the genius of the Gestalt psychologists to recognize that the under standing of the
whole guides the perception of the part. Thismay be reconciled with the present framework by
assuming that, in many cases, a processor on level n and a processor on level n-1 will refer to
respectively more and less "locd" aspects of the same phenomenon. For instance, a processor on
leve -8 might refer to lines, and a processor on level -7 to shapes composed of lines. In this
framework, the Gestat insght means: the results obtained by processors on level n of the
perceptual hierarchy are used to tell processors on level n-1 what to look for. Specificdly, |
suggest that they are used to give the processors on level n-1 some idea of what the set {Yi}
should be, and what the P(X%Y:) are.

In Gesdt Psychology, Wolfgang Kohler (1947, p.99) gave severd classic examples of this
kind of top-down information transmisson. For instance, if someone is shown Figure 8a and
asked to draw it from memory , they will correctly draw the point P on the center of the segment
onwhichit lies. But if someoneis shown Figure 8b and asked to draw it from memory, they will
place P to the right of the center. And, on the other hand, if they are shown Figure 8c and asked
to draw it from memory, they will usudly placeit to the left of the center. Hundreds of
experiments point to the concluson that this sort of thing is not aquirk of memory but rather a
property of perception -- we actudly see dots in different places based on their surroundings.

Thisisonly the most rudimentary example. It has been conclusively demondrated (Rock,
1983) that a stationary object appears to moveif it is surrounded by amoving object, that a
verticd line gppearstilted if it is seen within aroom or rectangle that istilted, that the percelved
speed of amoving object isafunction of the Size of the aperture through which it is perceived, et
cetera. And Figure 9 (Rock, 1983) is an example of a picture which at first lookslike a
meaningless arrangement of fragments, but actualy 1ooks entirely different once recognized.

All these examplesilludtrate that the operation of a processor at level n can be affected by the
conclusions of a processor at level n+1. Each one of these particular cases is undoubtedly highly
complex. For the purpose of illustration, however, let us take a dragtically oversmplified
example. Say the processor which perceives points and linesison leve -8. Then perhaps the
processor which put points and lines together into shapesison leve -7. According to this setup,
Kohler's smple example illugtrates that the operation of level -8 isaffected by the results of a
leve -7 computation. Roughly speaking, the processor on level -7 takes in abunch of points and
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lines and guesses the "mogt likely shape' formed out of them. It then gives the processor on level
-8 acatan probability digribution {m}, which indicates in this case that the point is more likely
to be to theright of the center of theline.

COGNITION OR SPONTANEOUSINTERACTION?

Above | said that on lower levels, agreat ded of perceptua processing is executed by
"hardwar€’, by biologicd programs that may have little to do with deduction, induction, andogy
or probability theory. But it is very difficult to estimate exactly how much this"great ded” is--
and this difficulty has nothing to do with the specifics of the present modd. Thereislittle
consensus in biology or psychology as to how much of the processing involved in perceptionis
"thoughtlike" as opposed to "hardware-like'. In fact, there islittle consensus as to what
"thoughtlike' means.

In the pagt, there have essentidly been two camps. The Gestdt psychologists believed that, in
the words of Irwin Rock,

the determinant of a perception is not the stimulus but pontaneous interactions between the
representations of severd stimuli or interactions between the stimulus and more central
representations. Such interaction could take any form consistent with the known principles of
neurophysiology. The essence of thistheory isthat... complex interactive events that ensue
following stimulation... can dlow for known effects such as those of context, constancy,
contrast, perceptua changes without stimulus changes, illusions, and the like. (p.32)

Rock opposes this " spontaneous interaction theory” to the "cognitive theory™, in which
"reference is made... to thoughtlike processes such as description, rule following, inference or
problem solving."

The theory given hereis plainly cognitive in nature. However, it leaves agreet ded of room
for "spontaneous interaction.” Firgt of al, as mentioned above, the theory assgns a sgnificant
roleto "hardware", which in the case of the human brain is likely to be independently operating
sdf-organizing neurd circuitry. How great or how smadl the role of thisindependently operating
circuitry is, we cannot yet say.

In any event, the entire debate may be amatter of semantics. | have made no redtrictions on
the nature of the physical systems underlying minds, except that they must behave smilarly to
the way they would if they followed the dgorithms given. It is certainly not unlikely thet the
brain "spontaneoudy” self-organizesin such away as to execute processes of cognition. As
observed in Chapter 1, some structure must be involved; an ungtructured neurd network will
virtudly never demondrate inteligent behavior. The sdf-organizing neurodynamics in which the
Geddtigts placed so much faith may indeed play adominant role.

So, thisis a cognitive theory, but it does not rule out the existence of noncognitive processes
underlying or supplementing cognition.
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For ingtance, consder Figure 9 above. The framework | have given provides a rather cognitive
andysds of this phenomenon. Suppose that, say, the part of the vision processing module that
resdeson level -3 contains a"shape interrdaion” or "form organization" processor. Assume that
this processor works by recognizing patterns in the input provided to it by level -4 processors,
such as "shape detection processors'. Then, once it has recognized the pattern "horse and rider”,
which greatly smplifies the picture, things change sgnificantly. Firg of dl, if the memory sores
the picture it will mogt likely sore it as a specific indantiation of the pattern "horse and rider”,
very differently from the way it would storeiit if no such prominent pattern had been recognized.
And, more to the point, the level -3 processor will adjust the{Yi} used by aleve -4 shape
recognition processor in avery specific way: it will tell it to look for shapes that look like legs,
tails, feet, et cetera. And, perhaps more sgnificantly, it will adjust the P(Y1), too -- it will tdl the
shape recognition processor that a shape is more likely if it looks like some part of ahorse.

It is possible that these changes will propagate further down. For instance, suppose that the
leve -4 shape recognition processor receives output from aleve -5 curve recognition processor.
Wheat if the new shapes on which the shape recognition processor has been instructed to
concentrate al have some common factor, say a gentle doping organic nature rather than an
angular nature or a spirading nature? Then the shape recognition processor might well ingtruct the
curve recognition processor to look for the appropriate curves -- i.e. it might supply the curve
recognition processor with new Yi, or with new P(Yi).

Again, thisandyssis highly overamplified, but it indicates the generd direction thet a
detailed andyss might take. It is cognitive in that it implies that reasoning is indeed occurring
below the conscious level. But does how the shape recognition, or the form organization
recognition, or the curve recognition take place? | have little doubt that these pattern recognition
problems are solved by specific salf-organizing networks of neura clusters. In this sense,
"gpontaneous interaction” undoubtedly plays an essentid role. Neura networks seem to be very
good at self-organizing themsalves so as to obtain the solutions to pattern-recognition problems.
But | think that certain very genera cognitive structures are so necessary, in order to
systematicaly direct these solutions toward the goa of intelligent behavior.

MULTILEVEL OPTIMIZATION IN THE PERCEPTUAL HIERARCHY

| have suggested that information can progress downward through the perceptud hierarchy,
but | have not yet said exactly how this information transmission is organized. The most natura
drategy for this purpose is multilevel optimization.

Thisis especidly plain when, asin vison processing, lower and lower levels refer to more and
more local agpects of the same phenomenon. In cases such asthis, operations on lower levels
roughly correspond to searches in smaller subsets of the space of dl patternsin the phenomenon
in question, so that the regulation of the perceptua hierarchy gppears very much like the
regulation of a search, as discussed in Chapter 2.

In generd, what the multilevel philosophy dictates isthat, after a processor on level n makes

its best guess asto the k most likely probability distributions pi=(pui,...,pni), it sends down
messages to L>k processors on level n-1. To each of these processorsit "assigns' one of the pi --
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the mogt likely distribution gets more processors than the second most likely, and so on. The
proportion of processors to be assigned each distribution could be set approximately equal to
S(pi,m)/[S(p1,m)+...+S(pk,m)], in the notation of the previous chapter.

To the processors it has assigned pi, it sends a new background distribution mi, based on the
assumption that pi is actudly the case. Also, it may send the processor new possihilities Y,
based on this assumption. These are not trivid tasks: determining anew mi and determining new
posshilities Yi both require deductive reasoning, and hence indirectly analogy and associative
memory.

The parameter k need not be congtant from leve to leve, but in the case of visuad perception,
for ingtance, it seems plausible that it is gpproximately congtant. Obvioudy, this requires that the
number of processors increases exponentialy asthe level decreases. But if the individud
processors on lower levels ded with progressvely smpler tasks, thisis not unreasonable.

The perceptud hierarchy may thus be understood to operate by interconnecting multilevel
optimization, Bayes rule and the maximum entropy principle -- and on the higher levels
integrating induction and anaogy-driven deduction as well.

SIMPLICITY AND PERCEPTION

Finaly, et us consder the Gestdtists basic law of visud perception: Any stimulus pattern
tendsto be seen in such away that theresulting structureisassmple asthe given
conditions permit. This rule was formulated to explain the results of numerous wel-known
experimentsinvolving, for ingtance, drawings with multiple interpretations. As mentioned above,
it has been shown that the interpretation which one places on adrawing can affect the way one
actudly sees the drawing.

The key shortcoming of this Geddtist principleis, in my opinion, the vagueness of the word
"gamplicity.” Some Geddtists have implied that there isabiologicaly innate measure of
amplicity. However, experiments indicate that perception of visud stimuli is definitely
influenced by culture (Segd et d, 1966). This provides a particularly strong argument for the
need for a precise definition of amplicity: it showsthat smplicity is not auniversd intuition, but
is to some extent learned.

Shortly after the discovery of information theory, Hochberg and McAlister (1953) attempted
to use it to make Gestdt theory precise. They proposed that "other things being equd, the
probabilities of occurrence of dternative perceptud responsesto agiven simulus (i.e. their
'goodness) are inversaly proportiona to the amount of information required to define such
dterndives differentidly; i.e, thelessthe amount of infor mation needed to define a given
organization as compared to the other alternatives, the morelikely that figure will be so
perceived.

They defined "goodness’ as "the response frequency or relaive span of time ... devoted to

each of the possible perceptua responses which may be dicited by the same simulus™ And they
defined information as "the number of different items we must be given, in order to specify or
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reproduce a given pattern or figure, along some one or more dimensions which may be
abgtracted from that pattern, such as the number of different angles, number of different line
segments of unequd length, etc.” Wisdly, they did not blindly equate intuitive "information” with
information in the communication-theoretic sense. However, their definition is not really much
more precise than the standard Gestalt doctrine.

What if we replace "amount of information needed to define" in Hochberg's hypothesis with
"complexity of defining rddive to the patterns dready in the mind,” in the sense defined in
Chapter 4? This seems to me to capture what Hochberg and McAligter had in mind. The "number
of different items' in a st isacrude estimate of the effort it takes the mind to dedl with the set,
which is (according to the present mode of mind) closely related to the dgorithmic complexity
of the st reldtive to the contents of the mind. To get a better estimate one must consider not only
the raw quantity of items but also the possibility that a number of itemswhich are dl minor
vaiations on one basic form might be "smpler” to the mind than a smdler number of more
variousitems. And thisline of thought leads directly to the analyss of pattern and complexity
proposed in Chapter 4.

Next, what if we associate these "dternative perceptua responses' with complementary
patternsin the set of stimuli presented, in the sense given in Chapter 4? Then we have a pattern-
theoretic formulation of the Gestat theory of perception: Among a number of complementary
patternsin a given stimulus, a perceiving mind will adopt the one with the least complexity
relativeto its knowledge base. Note that this refers not only to visua stimuli, but to perception
in generd. It is easy to see that this principle, obtained as a modification of standard Gestalt
theory, is a consequence of the moded of perception given above. Given asat of simuli, Bayes
rule picks the most likely underlying form. But it needs some sort of prior assumption, and on
the higher levels of the perceptua hierarchy thisis supplied by anetwork of processesinvolving
andogy, and therefore long-term memory. Thus, to a certain extent, what we deem most likely is
based on what we know.

To alarge extent, therefore, we see what we know. This does not imply that the patterns we
percaeivearent "there’ -- but only that, among the immensevariety of patternsin the universe, we
automatically tend to see those which are more closely reated to what we've seen or thought
before.

This has an interesting consequence for our analysis of induction. Above, we postulated that
the universe possesses a "tendency to take habits,” arguing that otherwise induction could not
possibly work. But induction is only the process of recognizing patternsin what one per ceives,
and assuming they will continue. Therefore, if we assume that

1) asthe Gedtdtist rule suggests, when given a"choice’ we tend to perceive what is most closely
related to our knowledge base;

2) the set of "externd™ patterns smple enough to be contained in our minds are presented in a

farly "unbiased” digribution (e.g. adigtribution fairly close to uniform, or fairly cdlosethe
digribution given in which probability of occurrenceis proportiond to intensity, &c.);
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then it follows that the universe as we perceive it must possess the tendency to take habits. Of
coursg, thisline of thought is circular, because our argument for the generd Gestdt ruleinvolved
the nature of our model of mind, and our modd of mind is based on the ussfulness of pattern-
recognitive induction, which is conditiona on the tendency to take habits. But dl this does serve
to indicate that perception is not merdly atechnicad issue; it isintricately bound up with the
nature of mind, intelligence, and the exterrdl world.

10
Motor Learning
10.0 Generating Motions

Twenty years ago, Marr (1969) and Albus (1971) suggested that the circuitry of the
cerebellum resembles the learning machine known as the " perceptron.” A perceptron learns how
to assign an gppropriate output to each input by obeying the suggestions of its "teacher”. The
teacher provides encouragement when the perceptron is successful, and discouragement
otherwise. Marr and Albus proposed that the climbing fibers in the cerebellum play the role of
the teacher, and the mossy fibers play the role of the input to which the perceptron is supposed to
assign output.

Perceptrons are no longer in vogue. However, the generd view of the cerebdlum asalearning
meachine has received a Sgnificant amount of experimenta support. For instance, 1to (1984) has
sudied the way the brain learns the vestibulo-ocular reflex -- the reflex which keeps the gaze of
the eye at afixed point, regardiess of head movement. Thisreflex reies on ahighly detailed
program, but it is dso Stuation-dependent in certain respects; and it is now clear that the
cerebellum can change the gain of the vestibulo-ocular reflex in an adaptive way.

The cerebdlum, in itsdf, is not cgpable of coordinating complex movements. However, Fabre
and Buser (1980) have suggested that smilar learning takes place in the motor cortex -- the part
of the cortex that is directly connected to the cerebellum. In order to learn a complex movement,
one must do more than just change afew numerica vauesin a previous motion (eg. the gain of
areflex arc, the speed of a muscle movement). Sakamoto, Porter and Asanuma (1987) have
obtained experimenta evidence that the sensory cortex of acat can "teach” its motor cortex how
to retrieve food from a moving beaker.

Asanuma (1989) has proposed that "aggregates of neurons congtitute the basic modules of
motor function”, an hypothesiswhich isin agreement with Edeman's theory of Neurd
Dawinism. He goes on to observe that "each module has multiple loop circuits with many other
modules|ocated in various areas of the brain” -- agtuation illusirated roughly by Figure 10. In
this view, the motor cortex isanetwork of "schemes' or "programs’, each one interacting with
many others, and the mogt interesting question is: how isthis network structured?

10.1 Parameter Adaptation
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Consder an dgorithm y=A(f,x) which takesin aguess x at the solution to a certain problem f
and outputs a (hopefully better) guessy at the solution. Assumethat it is easy to compute and
compare the quality Q(x) of guess x and the quaity Q(y) of guessy. Assume aso that A contains
some parameter p (which may be anumerica vaue, avector of numerical values, etc.), so that
we may write y=A(f,x,p). Then, for agivenset S of problemsf whose solutions dl lie in some
&t R, there may be some value p which maximizes the average over dl f in S of the average
over dl xin R of Q(A(f,x,p)) - Q(x). Such avaue of p will be called optimal for S.

The determination of the optima vaue of p for agiven S can be aformidable optimization
problem, even in the case where S has only one eement. In practice, Snce one rarely possesses a
priori information as to the performance of an dgorithm under different parameter values, oneis
required to assess the performance of an agorithm with respect to different parameter vauesin a
real-time fashion, as the dgorithm operates. For instance, a common technique in numerical
andysisisto try p=afor (say) fifty passes of A, then p=b for fifty passes of A, and then adopt the
vaue that seems to be more effective on a semi- permanent basis. Our goa hereis amore generd
approach.

Assumethat A has been gpplied to various members of S from various guesses x, with various
values of p. Let U denote the nx2 mairix whose i'th row is (fi,xi), and let P denote the nx1 vector
whosei'th entry is (pi), where fi, xi and pi are the vaues of f, x and p to which the i'th pass of A
was applied. Let | denote the nx1 vector whose i'th entry is Q(A(fi,xi,pi))-Q(x). The crux of
adaptation is finding a connection between parameter values and performance; in terms of these
matrices thisimplies that what one seeksis afunction C(X,Y) such that %C(U,P)-1% issmadl,
for some norm % %.

So: once one has by some means determined C which thus relates U and I, then what? The
overdl object of the adaptation (and of A itsdlf) isto maximize the Sze of | (specificdly, the
most relevant measure of Sze would seem to be the I norm, according to which the norm of a
vector isthe sum of the absolute vaues of its entries). Thus one seeks to maximize the function
C(X,Y) with respectto Y.

PARAMETER ADAPTATION ASA BANDIT PROBLEM

The problem hereisthat one must baance three tasks. experimenting with p so asto locate an
accurate C, experimenting with P so as to locate a maximum of C with respect to Y, and at each
stage implementing the what seems on the basis of current knowledge most appropriate p, so as
to get the best answer out of A. This sort of predicament, in which one must balance
experimentalvariation with use of the best results found through past experimentation, is known
as a"bandit problem" (Gittins, 1989). The reason for the name is the following question: given a
"two-armed bandit”, a dot machine with two handles such that pulling each handle givesa
possibly different payoff, according to what strategy should one didtribute pulls among the two
handles? If after a hundred pulls, the first handle seemsto pay off twice as well, how much more
should one pull the second handle just in case this observation is a fluke?

To be more precise, the bandit problem associated with adaptation of parametersis asfollows.
In practice, one would seek to optimize C(X,Y) with respect to Y by varying Y about the current
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optima vaue according to some probability digtribution. The problem is: what probability
distribution? One could, of course, seek to determine this adaptively, but thisleads to aregress.
how does one solve the bandit problem associated with this adaptation?

10.2 TheMotor Control Hierarchy

| propose amotor control hierarchy which is closely analogous to the perceptua hierarchy, but

works in the opposite direction. In the motor control hierarchy, the lower levels ded directly

with muscle movements, with bodily functions, whereas the higher levels ded with petternsin
bodily movements, with schemes for arranging bodily movements. This much is smilar to the
perceptud hierarchy. But in the motor control hierarchy, the primary function of a processor on
level nisto ingtruct processors on level -1 asto what they should do next. The most crucia
information transmission is top-down. Bottom-up information transmisson is highly smplidic:
itisof the form "1 can do what you told me to do with estimated effectiveness E".

Let us be more precise. When we say a processor on the n'th leve tells a processor on the n-
1'th level whet to do, we mean it givesit acertain goal and tdlsit to fulfill it. Thet is, we mean
it posesit acertain optimization problem It tdlsit: do something which produces aresult as
near to this god as possible. The processor on the n-1'th level mugt then implement some
scheme for solving this problem, for gpproximating the desired god. And its scheme will, in
generd, involve giving ingructions to certain n-2'nd level processors. The important point is that
each level need know nothing about the operation of processors 2 or 3 levels down fromit. Each
processor supplies its subordinates with ends, and the subordinates must conceive their own
means.  Aswith the perceptua hierarchy, consciousness plays arole only on certain rdlaively
high levels. So, from the point of view of consciousness, the motor control hierarchy has no
definite end. But, from the point of view of externd redlity, there is an indisputable bottom leve:
physica actions. The lowest level of the motor control hierarchy therefore has no subordinates
except for physicd, nonintelligent systems. It must therefore prescribe means, not merely ends.

Now, where do these "schemes' for optimization come from? Some are certainly
preprogrammed -- e.g. a human infant appears to have an inborn"sucking reflex". But -- as
observed above -- even a cursory examinaion of motor development indicates that a greet ded
of learning isinvolved.

Let us assume that each processor is not entirely free to compute any function within its
cagpacity; that it has some sort of generd "agorithm scheme’, which may be made more precise
by the specification of certain "parameter values'. Then thereisfirgt of dl the problem of
parameter adaptation: given an optimization problem and a method of solution which containsa
number of parameter values, which parameter vaues are best? In order to approximately solve
this problem according to the scheme given above, dl thet is required is an estimate of how
"effective’ each parameter value tendsto be. In the motor control hierarchy, a processor on level
n must obtain this estimate from the processors on level n-1 which it has ingtructed. The
subordinate processors must tell their controlling processor how well they have achieved their
god. The effectiveness with which they have achieved their god is arough indication of how
effective the parameter valuesinvolved are for that particular problem.
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So, on every leve but the lowest, each processor in the hierarchy tells certain subordinate
lower-level processors what to do. If they can do it well, they do it and are not modified. But if
then cannot do their assgned tasks wdll, they are experimentaly modified until they cando a
satisfactory job. The only loose end here is the nature of this experimental modification.
Parameter adaptation is only part of the story.

MOTOR CONTROL AND ASSOCIATIVE MEMORY

Knowing how effective each vector of parameter valuesis for each particular problemis
useful, but not adequate for generad motor control. After al, what happens when some new
action is required, some action for which optima parameter vaues have not dready been
estimated? It would be highly inefficient to begin the parameter optimization agorithm from
some random set of values. Rather, some sort of educated guessisin order. This means
something very smilar to andogica reasoning is required. Presented with a new task, a motor
control processor must ask: what parameter values have worked for smilar tasks?

So, each motor control processor must firgt of al have access to the structurally associative
memory, from which it can obtain information as to which tasks are smilar to which tasks. And
it must dso have access to amemory bank storing estimates of optimal parameter values for
given tasks. In thisway it can select appropriate schemes for regulating action.

Based on the biologica facts reviewed above, it is clear that this aspect of motor control is
native to the motor cortex rather than the cerebellum. To learn a complex action, the brain must
invoke the greater pladticity of the cortex.

LEARNING TO THROW

Introgpectively spesking, al thisislittle more than common sense. To figure out how to throw
acertain object, we sart out with the maotions familiar to us from throwing smilar objects. Then,
partly conscioudy but mainly unconscioudy, we modify the "parameters’ of the motions. we
change the speed of our hand or the angle at which the object istilted. Based on trid-and-error
experimentation with various parameters, guided by intuition, we arrive & an optimal, or & least
adequate, set of motions.

This process may be smple or sophisticated. For instance, when firgt throwing afrisbee with a

hole in the middle, one throwsit asif it were an ordinary frisbee; but then one learns the subtle
differences. In this case the mgor problem is fine-tuning the parameters. But when learning to
throw a shot-put, or afootbdl, the only useful item to be obtained from memory isthe generd
scheme of "throwing" -- dl the re must be determined by conscious thought or, primarily,
experimen.

And when learning to juggle, or when learning to throw for the first time, the mind must
synthesize whole new patterns of timing and coordination: there is not even any "scheme' which

can be gpplied. Fragments of known programs must be pieced together and augmented to form a

new program, which then must be fine-tuned.
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More and more difficult tasks require higher and higher levels of the motor control hierarchy -
- both for learning and for execution. Even the very low levels of the motor control hierarchy are
often connected to the perceptua hierarchy; but the higher levelsinvolve agreat dedl of
interaction with yet other parts of the mind.

10.3 A Neural-Darwinist Perceptual-Motor Hierarchy

In Chapter 6 we used Edelman’s theory of Neural Darwinism to explore the nature of neura
andogy. However, we did not suggest how the "lower-to-intermediate-leve™ detalls discussed
there might fit into atheory of higher-level brain function. It is possible to give a partid Neurd-
Dawinig analyss of the perceptuad and motor hierarchies. This entails wandering rather far
from the biologica data; however, given the current sate of neuroscience, thereislittle choice.

Assume that the inputs of certain neurd clusters are connected to sensory input, and that the
outputs of certain clusters are connected to motor controls. The purpose of the brain isto give
"appropriate’ ingructions to the motor controls, and the determination of appropriateness at any
giventimeisin large part dependent upon the effects of past ingtructions to the motor controls --
i.e. On using sensory input to recognize patter ns between motor control instructions and
desrability of ensuing Studtion.

In order to make sense of this picture, we must specify exactly howappropriatenessisto be
determined. Toward thisend | will ddineate a hierarchy of maps. Maps which are connected to
both sensory inputs and motor controls (as well as, naturdly, other clusters) we shdl call level 1
maps. These maps are potentidly able to "sense” the effect of motor control instructions, and
formulate future motor control ingructions accordingly.

One question immediately arises. How are gppropriate level 1 maps arrived at and then
maintained? In the smple Hebb rule discussed in Chapter 6, we have amechanism by which any
map, once repeatedly used, will be reinforced and hence maintained,; but this says nothing about
the problem of arriving a an appropriate map in the first place. Rather than proposing a specific
formula, let us dodge the issue by asserting that the appropriateness of level 1 maps should be
determined on the basis of the degree to which the leves of certain chemica substancesin their
vicinity are maintained within biologically specified "appropriate’ bounds. This cowardly
recourse to biological detail can serve asthe "ground floor" of an interesting genera definition of
appropriateness.

Define amap which isnot aleve-1 map to be appropriate to the extent that the maps or motor
controls to which it outputs are appropriate. The ideais that a map is appropriate to the extent
that the entities over which it has (partia) control are gppropriate. The gppropriateness of aleve
1 map is patidly determined by the extent to which it directs motor controls to make appropriate
actions. And in the long run -- barring gatistica fluctuations -- thisisroughly equivalent to the
extent to which it represents an emergent pattern between 1) results of motor control and 2)
appropriateness as measured by sensory data and otherwise. Thisisthe crucid observation. In
generd, the gppropriateness of amap is determined by the extent to which it directs other maps

Get any book for freeon:  www.Abika.com

131



THE STRUCTURE OF INTELLIGENCE 132

to effect appropriate actions, either directly on motor controls or on other maps. And, barring
gatigtica fluctuations, it is plain that thisis roughly equivaent to the extent to which it
represents an emergent pattern between 1) results of outputs to other maps and 2) inputsiit
obtains from various sources.

It isimportant to remember that we are not hypothesizing the brain to contain distinct "pattern
recognition processors' or "andogica reasoning processors' or "memory cdls': our mode of
mind is schematic and logicd, not necessarily physicd; itisamode of patterns and processes.
We have hypothesized a neurd mechanism which tends to act much like a pattern recognition
processor, and that is all that can reasonably be expected.

Now, let us go beyond the level 1 maps. Define adegr ee 2 map as amap which outputs to
level 1 maps (as wdll as possibly inputting from level 1 maps and other maps and outpuiting to
other maps). Define a degr ee 3 map as one which outputs to degree 2 maps (as well as possibly
level 1 maps, etc.). One may define maps of degree 4, 5, 6,.. inasmilar way. Thelevel of amap
isthen defined as the highest degree to which it possesses. If aleve k map accepted inputs only
from maps of levd k-1 or lower, the network of maps would have adtrictly hierarchical
gructure. There would be a"top" leve n, and our definition of appropriateness would define
appropriateness on al levelsless than n in terms of top-level appropriateness, but say nothing
about theappropriateness of amap on level n. But in fact, the maps of the brain are arranged in a
far less orderly fashion. Although there is a bottom leve -- thelevel of perception and action --
thereisno digtinct top leve.

The nonhierarchical interconnection of the maps of the brain implies that the eva uation of
gopropriatenessis a very tricky matter. If A and B both input and output to each other, then the
appropriateness of A is determined in part as an increasing function of the gppropriateness of B,
and vice versa. The hierarchy of maps does bottom out at level 1, but it lso re-entersitsdf
multiply. In avery rough way, this explains alot about human behavior: our internd definition
of "gppropriateness’ is determined not only by low-level biologica factors but aso by asubtle,
probably unsgtable dynamica system of circularly reinforcing and inhibiting patterns.

We have not yet specified what exactly happens to inappropriate maps. Clearly, an
inappropriate map should be dissolved, so that it will no longer direct behavior, and so that a new
and hopefully better map can take its place. The easiest way to effect this would be to inhibit the
connections between clusters of the map -- to decr ease their conductances (roughly spesking,
proportiondly to the lack of appropriateness). Naturaly, if a connection belonged to more than
one map, this decrease would be mitigated by the increase afforded by membership in other
maps, but this effect need not rob inhibition of its effectiveness.

Biologicdly, how might such a sysem of inhibition work? It is known that if a once-
frequently-used connection between clustersis unused for atime, its conductance will gradudly
revert to the level of other infrequently-used neurons. Naturdly, the presence of inhibitory
connections between individua neurons plays arolein this. However, it is not presently known
whether this effect is sufficient for the suppression of ingppropriate maps.
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At this point, just as we are beginning to move toward the higher levels of mentd process, we
must abandon our discussion of the brain. We have aready |eft our starting point, Neural
Dawinism, too far behind. On the positive sde, we have congtructed a hierarchy of neurd maps
which is, intuitively, acombination of the perceptua and motor control hierarchies: it recognizes
patterns and it controls actions, usng asmple form of andogy, in an interconnected way.
However, we have accounted for only afew of the smpler aspects of the master network to be
described in Chapter 12 -- we have spoken only of pattern recognition and a smple form of
gructurd andogy. We have sad nothing of induction, deduction, Bayesian inference, or
modeling or contextud anaogy, or even more genera forms of ructurd analogy. It is difficult
to see how these subtler aspects of mentality could be integrated into the Neurd Darwinist
framework without atering it beyond recognition. It seems to me that they may require
somewhat more structure than the salf-organizing network of maps which Neurad Darwinism
Proposes.

11

Consciousness and Computation

11.0 Toward A Quantum Theory of Consciousness

For sixty years physicigs have struggled with the paradox of quantum measurement.
However, despite a number of theoretical advances, rather little progress has been made toward
resolution of the basic dilemma. The problem is one of physics versus phenomenology.
According to quantum physics, no physicd entity is ever in adefinite sate; the most one can
ever say about a given entity isthat it has certain probabilities of being in certain Sates. And yet,
both in daily life and in the laboratory, things do sometimes appear to have definite Sates.

For instance, the equations of quantum physics predict that, in many Stuations, an eectron has
a50% "chance" of having a positive spin, and a50% "chance' of having a negative spin. Y et
when the physicigt probes the eectron in his laboratory, it gppears to have either apostive soin
or anegative spin. According to the equations of quantum physics -- the Heisenberg equation
and the Schrodinger equation -- such areduction to a definite dateisimpossble.  Of course,
one may have various degrees of probabilistic knowledge. In certain Situations, one might know
an eectron to have a 90% "chance’ of having pogtive spin, and a 10% "chance' of having
negative spin. But there can never be 100% definite knowledge. Heisenberg's indeterminacy
principle says that one can never have complete knowledge of the Sate of any particle: the
greater the accuracy with which one knows its position, the less the accuracy with which one can
know its momentum; and vice versa. In order to predict what the particle will do in the future,
one needs to know both the position and the momentum; but according to quantum physics, this
is possible only probabiligtically.
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This sort of indeterminacy is a proven scientific fact, inasmuch as quantum theory isthe only
known theory that correctly explains the behavior of microscopic particles, and it predicts only
probabilities. Classicd mechanics and dectromagnetism gave definite answers about the
behavior of microscopic particles, but these answers were experimentaly wrong. Furthermore, it
seems likely that, if quantum theory is someday superseded, the theory which followst will build
on the probabilistic nature of quantum theory, rather than regressing to classcal idess. In fact, it
has been proved mathematicaly (Bell, 1964, 1987) that any physca theory satisfying certain
ample requirements must necessarily have properties smilar to those of quantum theory: it must
dedl only in probabilities.

BEYOND THE PROJECTION POSTULATE

In his classic treatise on quantum theory, John von Neumann (1936) introduced the
"projection postulate”, an addition to the basic principles of quantum physics which sates that,
when an entity is measured, it reduces to a definite sate. This approach appears to be adequate
for mogt practica problems of quantum mechanics, and, dthough, many physicigsfind it
unacceptable, there isno equally eegant dternative. The only trouble is that no one has ever
given asdtidfactory definition of "measurement”.

Origindly it was thought that a microscopic event could be considered to be measured when it
"regigered” an effect on some macroscopic entity. The judtification for this was the belief thet, as
entities become larger and larger, the probabilistic nature of quantum physics becomes less and
lessrelevant to their behavior. For instance, according to quantum physics a basebal dropped
from awindow has an infinity of possible paths, but one of them, or one amd| class of them, is
ovewhemingly more likely than the others.

But this naive identification of measurement with macrascopic effect cannot stand up to
aitidam.  Spiller and Clark (1986) have constructed a Superconducting Quantum Interference
Device (SQUID) which is about the sze of athumbnail and yet displays the same sort of
uncertainty as an eectron. One can never know both the intensity and the flux of its magnetic
field with perfect accuracy; there isafinite limit beyond which further accuracy isimpossible. Its
date is fundamentally a probabilistic superposition.

And it appears that the brain may disolay a smilar form of quantum indeterminacy
(Changeaux, 1985; Penrose, 1990). Recall that a neuron fires when its charge exceeds a certain
threshold amount. It follows that, on occasion, highly unpredictable quantum phenomena may
push the charge of a neuron over the threshold. And this neuron may then set other neurons off,
and so on -- in this manner atiny quantum indeterminacy may give riseto ahuge
neurophysiological uncertainty. If the extra charge has afifty-fifty chance of being there, then
the entire pattern of neurond firing that ensues from its presence probably has about a fifty-fifty
chance of being there. A pattern of neurond firing might, for ingtance, represent a state of mind.
And when you condder the fact that there are over a hundred billion neuronsin the brain, the
possibilities for interlocking quantum uncertainties are astounding. The exact numbers are
difficult to estimate, but it gppears that this may be a significant phenomenon.
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One intriguing aternative to the projection postulate is Everett's (1957)" many-worlds
hypothesis', which assigns to each uncertain Stuation an array of universes, one corresponding
to each possible outcome. For instance, according to the many-worlds hypothess, every timea
physicist observes an eectron to have positive spin, thereis an dternate universe which is
exactly identical to this one, except that in the aternate universe the physicist observesthe
electron to have negdtive pin. Thisis an interesting possbility, but it is empiricaly
indistinguishable from the projection postulate, since these dternate universes can never be
observed.

THE QUANTUM THEORY OF CONSC |OUSNESS

Another dterndive, first proposed by Wigner (1962), is that "measurement” may be defined as
"regidration into consciousness.” To see the motivetion for thisradica ides, let usturn to the
infamous paradox of Schrodinger's cat (1948). Here the peculiarity of quantum theory is elevated
to the level of absurdity. Put a cat in a soundproofed cage with a radioactive atom, a Gelger
counter and avid of poison gas. Suppose that the atom has a hdf-life of one hour. Thenit hasa
fifty-fifty chance of decaying within the hour. According to the dynamica equations of quantum
physics, thisisall one can know about the atom: that it has afifty-fifty chance of decaying.
Thereis no possble way of gaining more definite information.

Assumethat, if the atom decays, the Geiger counter will tick; and if the Geiger counter ticks,
the poison vid will be broken. This sst-up is bizarre but not implausible; a clever engineer could
arange it or something smilar. What is the sate of the cat after the hour is up? According to
quantum theory without the projection postulate, it is neither definitely aive nor definitely dead -
- but hdf and haf. Because the atlom never ether definitely decays or definitely doesn't decay:
quantum physics deds only in probahilities. And if the atlom never either definitely decays or
definitely doesn't decay, then the cat never definitey dies or definitely doesnt die.

One might argue that the cat is not in a State of superposition between life and desth, but rather
has a fifty percent chance of being dive and afifty percent chance of being dead. But according
to quantum theory without the projection postulate, the cat will never collgpse into a definite
date of being either dive or dead. What sense does it make to suggest that the cat has afifty
percent chance of entering into a state which it will never enter into? The function of the
projection podtulate is to change the statement that the cat is haf dead and hdf diveinto a
staterment about the probabilities of certain definite outcomes.

Of course, the fact isthat if we look in the box after the hour is up, we ether see adead cat or
aliving cat. Phenomenologicdly, by the time the observation is made, one of the two
possihilitiesis selected -- definitely selected. But when, exactly, does this sdlection occur? Since
measurement cannot be defined as macroscopic regidration, thisis a very serious problem.

And the problem is resolved very negtly by the hypothesis that probabilisticoccurrences are
replaced by definite occurrences when they enter consciousness.
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For ingtance, thisimplies that Schrodinger's cat is not haf dead and haf dive, but rather has a
fifty percent chance of being dead and afifty percent chance of being dive. The cat becomes
definitely deed or definitely dive when a conscious being seesit. As Goswami puit it,

it isour consciousness whose observations of the cat resolves its dead-or-dive dichotomy.
Coherent superpositions, the multifaceted quantum waves, exist in the transcendent order until
consciousness brings them to the world of gppearance with the act of observation. And, in the
process, consciousness chooses one facet out of two, or many, that are permitted by the
mathematics of quantum mechanics, the Schrodinger equation; it isalimited choice, to be sure,
subject to the overdl probability condraint of quantum mathematics (i.e. consciousnessis
lawful).... [Clonsciousness... is not about doing something to objects via observing, but
consists of choosing among the alter native possibilities that the wave function presentsand
recognizing the result of choice. (1990, p. 142)

Thet is, the mind does not create the world in the sense of reaching out and physically modifying
events. But it creetes the world by sdecting from among the wide yet limited variety of options
presented to it by the probabilistic equations of physics.

11.1 Implications of the Quantum Theory of Consciousness

The measurement paradox is not the only philasophicaly troublesome aspects of quantum
physics. Bdl's Theorem (1987), with its implication of ingantaneous communication between
digant events, is equdly unsattling. The amplest example of thisis the Eingtein- Podol sky- Rosen
(EPR) thought experiment. Two eectrons, initialy coupled, are shot off in differert directions. It
is assumed thet each oneflies for millions of mileswithout hitting anything. Each one, according
to quantum physics, has afifty-fifty chance of gpinning to the right or to the I€ft -- thereisno
way to make amore accurate prediction. However, the rules of quantum physics do imply thet
the two are spinning in opposite directions: if oneis spinning to the right, then the other oneis
spinning to the left; and vice versa

Now suppose someone measures one of the eectrons, and that it al of a sudden assumesa
definite vaue. Then the other dectron will immediately dso assume a definite vaue -- because
it is known that the two are spinning in opposite directions. If oneis measured to be spinning to
the right, then the other isinstantaneoudy known to be spinning to the left. When Eingein
conceived this example, he thought he had disproved quantum mechanics -- because nothing so
absurd could possibly be true. After all, he asked how doesthe one electron tell the other one
which way to spin? Specid rdaivity forbids information to travel faster than the speed of light;
S0 it would seem that if the particles were sufficiently distant, the vaue of the spin of one
particle could take eons to reach the other particle.

But, absurd asthismay be, it is an experimentally proven fact (Aspect and Grangier, 1985).
Scenarios very smilar to the origind EPR thought experiment have been tested in the lab. It
turns out that, mathematically spesking, this peculiar "nonlocdity” does not contradict specia
relativity, because no infor mation is being tranamitted, only acorrelation. But thisis very little
consolation: it isaviolation againg the spirit, if not the letter, of specid rdativity.
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Redlity does not consigt of pairs of eectrons, coupled and then shot out into space amillion
milesin opposite directions. Consder the following thought experiment. Split gpart two coupled
physica sysems, say A and B. Suppose that, from the state of A, one could infer the state of B,
and vice versa. Leave A done but let B interact with C for awhile, and then separate B from C.
Finaly, measure A. A is collagpsed into some definite sate. If B had not interacted with C, one
could say that the state of B would also, immediately, collgpse into some definite Sate. But the
gtate of B now depends aso upon the state of C, which according to quantum physics has no
definite value but is rather an array of possibilities. So the measurement of A does not collapse B
to adefinite state. But it does, however, decrease the uncertainty involved in the state of B. It
increases the "closeness' of B to a definite Sate.

Technically speaking, assume that p=(pz,p2,...,pn) denotes the probabilities of the various
possible satesin which B might be. Then one may show that, in the situation described above,
the measurement of A necessarily changes p into anew set of probabilities p%=(p1%,...,pn%) SO
that H(ps,...,pn) < H(p1%,...,pn%), where H is the entropy function

H(pz,...,pn) = -[pzlogpz + ... + pnlogpn]

A dmilar satement may be made when the possible states of B form a continuum rather than a
discrete set. Recdll that the entropy of a probability distribution is a measure of its uncertainty, or
its distance from the most certain distribution.

This thought experiment may be generdized. What if the date of B cannot be completely
determined from the gate of A? If the state of A yidds any informetion at al about the state of
B, then it is plain that the same result holds. If A and B were ever coupled, no matter how
loosaly, no matter what they have done since, measurement of A reduces the uncertainty of the
probability distribution characterizing the states of B. Bell's Theorem implies that this sort of
propagation of certainty is a necessary aspect of any physcd theory that is mathematicaly
smilar to quantum theory.

In terms of the quantum theory of consciousness, what does this mean? A little consciousness
can go along way! If two sets of possibilities have been coupled in the past, and are then
separated, then whenever consciousness makes one of them definite, the other one becomes
definite automaticaly,ingantaneoudy, without any physical causation involved.

QUANTUM CONSCIOUSNESS, BIOLOGICAL CON SCIOUSNESS

By introducing consciousness, one obtains a philosophicaly eegant resolution of the paradox
of quantum measurement. But in away we are abusing the word "consciousness'. What qualities
does this abstract entropy-decreasing consciousness share with the common-sense understanding
of consciousness? We have reconciled the physics of measurement with the phenomenology of
measurement only by separating the physics of consciousness from the phenomenology of
CONSCi OUSNESS.

Mandler has proposed that
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... [C]onscious congtructions represent the most generd interpretation that is appropriate to
the current scene in kegping with both the intentions of the individua and the demands of the
environment. ...Thus, we are aware of looking at a landscape when viewing the land from a
mountaintop, but we become aware of a particular road when asked how we might get down or
of an gpproaching sorm when some dark clouds "demand"” inclusion in the current congtruction.
In a problem-solving task, we are conscious of those current mental products that are closest to
the task at hand, i.e. the likely solution to the problem. (1985, p.81)

Whether or not this particular formulation is exactly correct, it seems plain that some smilar
characterization must hold true. Consciousness seems to have arolein planning and decision
making, but it is rardy involved in the minute details of everyday life: waking, turning the pages
of abook, choosing wordsin conversation, doing arithmetic with small numbers, etc. In the
language of the previous chapters, thismeansthat -- as dready stated -- consciousness has
contact with only a certain restricted range of the perceptud hierarchy.

The decision-making aspect of consciousness isintuitively harmonious with quantum theory:
in making adecison, oneis reducing an array of posshbilities to one definite date. Thereisa
sense in which making a decision corresponds to sdecting one of many possible universes. But
the quantum theory of consciousness gives us no indication of why certain decisons are
submitted to consciousness, but others are not.

One of the main problems hereisthat it is not clear what function the quantum theory of
consciousness is supposed to serve. In Wigner (1962) or Goswami (1990), consciousness is
essentidly defined as the reduction to a definite state, or more generdly as the decrease of the
entropy of an array of possble gates. This interpretation gives a transcendentdist resolution of
the mind-body problem, made explicit by Goswami when he suggests that, as a heuridtic tool, we
consider the mind to be a coupling of two computers, a classcal computer and a quantum
computer. The quantum computer behaves in away which transcends ordinary biophysics, and it
is this transcendencewhich is responsible for consciousness.

But there is another, more radica, way of interpreting the quantum theory of consciousness.
One may begin with the assertion that consciousnessis a process which is part of the dynamics
of certain physica systems, e.g. human brains. This means that consciousness has some direct
physica effect: that, for instance, when a pattern of neurd firings enters consciousness,
consciousness changes it in a certain characteristic way. The biochemica nature of this process
isof course largely unknown. However, Edelman (1989) has made some very interesting
hypotheses. In his notation, consciousness may be described as the continua interaction between
C(W) and C[C(W). C(1)], where

C(I) isthe neurd basisfor categorization of |, the interoceptive input --
autonomic, hypothdamic, endocrine. It is evolutionarily earlier, driven by inner events,
mediated by limbic and brain-stem circuits coupled to biochemicd circuits, and it shows
dow phasic activity. C[W] isthe neurd basisfor perceptual categorization of W, the

exteroceptive input -- periphera, voluntary motor, proprioceptive
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and polymoda sensory sgnals-- and is mediated by the thamus and

corticd aress. It isdriven largely by outer events, isfast, and handles many more
sgnasin pardld. C(W).C(l) represents the neurd basis of interaction and comparison of
two categoricd sysems that occurs, for example, at the hippocampus, septum, and
cngulate gyri. C[C(W).C(])] isthe neural basis of conceptua recategorization

of this comparison, which takes place in the cingulate gyri, tempora

lobes, and parietd and fronta cortex. (The boldface C indicates conceptua
categorization.)

Lesstechnically, what Edelman proposesis that consciousness is the interaction between two
processes: 1) the recognition of patterns in perceptions, and 2) the interaction between the
recognition of patterns of perception and the recognition of patternsin internd, emotiond,
chemicd gimuli.

Given thisbiological characterization of consciousness, one may then hypothesize that the
entropy reduction of arrays of possible statesis correlated with those changes the states of
conscious systems which correspond to conscious acts. This point of view -- which | will cdl the
strong interaction postulate -- places less responghbility on quantum theory than the
interpretation of Wigner and Goswami: it does not require quantum theory to explain
psychological facts. Rather, it portrays consciousness as the point of connection between psycho-
biologica dynamics and physica dynamics; the bridge between the mind and the world.

The quantum theory of consciousness, as presented by Wigner or Goswami, impliesa
transcendentaist resolution of the mind-body problem. But though it is useful for intuitively
understanding quantum theory, it isnot at dl adequate for understanding consciousness. The
grong interaction postulate is not merely areinterpretation of quantum theory: it Sates that
CONSCIOUSNESS, in Some sense,plays an active role in forming the physical world.

In terms of the many-worlds interpretation, strong interaction implies that the brain-states of
conscious entities put aspecial bias on the possble universes of the future. Everything in the
universe figuresinto the array of probabilities of possble future universes -- but conscious
sysems are involved in an additional feedback process with this array.

The idea of strong interaction may be worked out in much more detail, but that would lead us
too far astray. It may be that future developments in physics will render this entire discussion
nonsensical. However, as Penrose (1989) has pointed out, it is also possible that the relation
between mind and body will be essentid to the next revolution in physics,

SELF-AWARENESS
Findly, | would like to point out that the quantum view of consciousnessyields an interesting
interpretation of that intangible feding of saf-awareness that accompanies consciousness of

externd objects or definite ideas. Consder the following scenario. P and Q are closely coupled
agorithms, each one continualy modifying the other. Simultaneoudy, consciousness grestly
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reduces the uncertainty of both the distribution of possible states of P and the distribution of
possible states of Q. The reduction of the uncertainty P then reduces the uncertainty of Q yet
further; and vice versa. The result is that the combined entity P%Q has, in effect, looked at itself
and reduced its own entropy.

It isnot judtifiable to say that P%0Q did not redly look at itself, that what redlly happened was
that P and Q looked at each other. Because according to quantum physics, if we observed P % Q
to see what was redlly happening, this would change the probability distributions. Pand Q are
quantum coupled, and this means they are effectively one entity. Clearly, this Stuation is not
rare: feedback between different prominent structures is probably not the exception but the rule.

According to this andyss, the feding of salf-awarenessis not logicaly inherent to
CONSCioUSNess, it is rather an extremely common by-product of consciousness. This accounts for
the fact that we are not continudly absorbed with the sensation of self-awareness: it flitsin and
out of consciousness. Sdlf-awarenessis not quite the same as consciousness, but the two are
inextricably interlinked.

INTELLIGENCE AND CONSCIOUSNESS

Clearly, the quantum theory of consciousnessisin avery early stage of development.
However, none of the details are redly essentia here. The primary point of our excurson
through quantum theory was to arrive at one smple hypothesis that whereas Turing machines
CanNot POSSESS CONSCioUSNESS,quantum computers can.

This hypothesis has profound implications for the relation between consciousness and
intelligence. To seethis, we must consder a certain crucid but vastly under appreciated
shortcoming of the theory of Turing machines. Mahematicdly, it is easy to ded with Turing
meachines of arbitrarily large processng capacity. But in physicd redity, it isimpossible to build
an arbitrarily powerful Turing machine.

If the parts of amachine are very smdl or very closdy packed, then they are susceptible to
quantum effects, and the machine is a quantum compuiter, not gtrictly a Turing mechine: its
behavior depends crucidly on the peculiar properties of indeterminacy and nonlocdity. But if the
parts of a machine are not very smdl, and not very closdly packed, then they must soread over a
large expanse of gpace. However, according to the theory of specid relativity, information
cannot travel any faster than the speed of light. Therefore, thereis alimit to the peed of a
machine made of large and/or sparse parts.

From these congderationsit follows thet, for any given time period T, thereisa certain limit
to the amount of computation that a physical Turing machine can do intime T. Even without
estimating the specific numbers, it is clear that thislimit is congderably amdler than the totd
amount of computation which a quantum computer can do in time T. Deutsch has shown that an
abstract quantum computer cannot compute any functions which an abstract Turing machine
cannot aso compute. However, within any specified period of time, there is some physica
quantum computer which can compute functions that no physical Turing machine can.
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Now, intdligence depends not only on absolute computing power but also on speed. Therefore
it follows from our assumptions that there is a certain degree of intelligence which quantum
computers can attain but Turing machines cannot. Coupling this with the hypothesis thet
guantum computers but not Turing machines possess consciousness, one obtains the following
intriguing condusion: there may be a certain level of intelligence which can be attained only
by conscious entities.

11.2 Consciousness and Emotion

One often hears comments to the effect that "even if acomputer could somehow think, it could
never fed." And Dreyfus (1978), among others, has argued that thisimposes gtrict limitations on
the potentid power of computer thought. After dl, what isintuition but a sense of what "feds
right"?

The weakest point of such argumentsis that they do not refer to any particular definition of
emotion. Without a definition of emotion broad enough to apply, & least potentidly, to entities
subgtantidly different from human beings, how can one make afair judgement asto the
emotiona capacity of computers?

One might argue that no such generd definition is possible; that the only wayto understand
human emations is through human biology, which isinherently gpplicable only to entities
subgtantialy smilar to human beings. This argument is bolstered by the numerous vagaries and
sdf-contradictions which plague psychoandysis and other classicd theories of emotion, and dso
by the many impressive achievements of molecular psychology. However, it is nonethel ess not
implaugble thet thereisagenera structure of emotion.

In his 1887 classc Laws of Feding, Paulhan made an intriguing suggestion as to what this
gructure might be. And more recently, Mandler (1985) has outlined a theory very smilar to
Paulhan's, and gathered together agreat ded of datain favor of it. These theories are preliminary
and incomplete, and they are not essentiad to the main ideas of this book. However, they do
indicate how one might develop atheory of emotion compatible with the ideas of the previous
chapters.

MacCurdy, a psychoandyst, expressed Paulhan's core idea excdlently in his 1925 Psychology
of Emation: it isprecisdy

when inginctive reactions are simulated that do not gain expression, that affect is most
intense. It isthe prevention of the expression of ingtinct either in behavior or conscious thought
that leads to intense affect. In other words, the energy of the organism, activating an ingtinct
process, must be blocked by repression before poignant feding is excited.
In his own words, Paulhan's generd law of feding is smply that

desires ... only give rise to affective phenomena when the tendency awakened undergoes
inhibition.
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Throughout Laws of Feding, Paulhan implicitly assumes that "tendencies’ are the stuff of mind.
Since he never actudly defines the word "tendency”, | see no problem with reading "tendency”
as "behaviord pattern’.

In the language of the preceding chapter, a"desire” is an ingruction passed down the motor
control hierarchy. Very low-leve ingtructions probably do not deserve the labd "desire’, but
thereisno rigid cut-off point: the higher the level of an indruction, the moreitisa"dedre'.
Paulhan's hypothesis is that emotions occur only when such an ingruction is not obeyed. This
disobeya may be due to menta incapacity or to the uncooperativeness of externa redlity.
Emoation would never occur in an dl-powerful, al-knowing, perfectly-running mechine, because
dl of itsinternd ingructions would invariably be fulfilled. Livesey, in the first volume of his
1986 Learning and Emotion, has sketched out smilar idess, dthough his andysisisless specific
and hence less controversd.

HAPPINESS

Paulhan apparently did not try very hard to apply histheory to particular emotions. He
consdered this to be an dementary exercise. Unfortunately, Icannot agree with him on this
point: | have found this"exercise” to be formidably difficult. However, Paulhan did make two
clear definitions, S0 let us consider these: happinessisthe feeling of increasing order;
unhappinessisthe feeling of decreasing order.

Paulhan did not define order; in the present context, it seems most straightforward to define

the order of asat of patterns X asthe sum over dl x in X of the average, over dl neighbors (y,2)
of x in the mind's STRAM, of IN[x;(y,2)]. Thisimpliesthet the "feding of increasing order” is

the "feding of increasingly smple representation of the contents of one's subjective world.”
To put it rather pedanticaly, this means that happiness is the feding of recognizing petterns
more effectively than in the immediate past; and, on the other hand, unhappinessis the feding of
recognizing patterns less effectively than in the immediate past. Or, more intuitively: hgppiness
isthefeding of increasing unity.

The only puzzling thing about thisis thet, according to Paulhan's definition, al emotion
derives from inhibition; and therefore the "feding of increesing smplicity” must mean the
inhibition of those patterns which are rendered unnecessary or impossible by the advent of
increasing Smplicity. 1s happiness, then, the feding of stifling al the fruitless attempts to order
the world which are rendered irrdlevant by success? And is unhappiness, the feding of tifling
the habits ingtilled by a previoudy successful amplifying order of the world, in favor of further
|aborious attempts?

Thismay seem alittle bit bizarre. | would argue that, at any rate, thisis one important
meaning of the word "happiness” For ingtance, it explains, in avery rough way, why young
children (who are continudly presented with highly novel stimuli) obtain such plessure from
exploring and understanding. And, conversdly, it dso explains the human tendency toward
closed- mindedness: the intrusion of novel patterns into amenta world of familiar idess and

routines will usudly, at first anyhow, cause adecrease in the smplicity of one's representation of
the world.
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BEAUTY

Next, let us consder the experience of aesthetic appreciation, of "beauty.” One may define the
beauty of X to'Y asthe amount of happiness gained by Y from the patternswhich Y perceivesin
X, and thisis not unsatisfactory, but it would be nice to have a definition which provided insight

into theinternd dructure of the beautiful object. Thiswe shdl draw not from Paulhan, but from
aloose interpretation of the work of Georg Simmd.

In hisessay on "The Face', Smmd (1959) proposed that "the closer the interrelation of the
parts of acomplex, and the livelier their interaction (which transforms their separateness into

mutual dependence),” the greater the aesthetic sgnificance of that complex. It ssemsto me that
this "unity out of and above diversty,” this"interaction” and "interreation of the parts' isvery
well summedup by the concept of structura complexity. After dl, an entity isnot apriori divided
into "parts'; the mind dividesit into parts as part of the process of perception and comprehension
-- the "parts’ are patterns. And the "degree of interrdlation” of the various patternsis, | suggest,
smply the amount of pattern tying together the various paiterns -- in other words, the structura
complexity. Thus, it seems reasonable that the beauty of x to'y is the happiness associated with
that portion of St(x) which is perceived by y. Smme's conception of beauty as emergent order
coincides perfectly with Paulhan'sidea of happiness asincreasing order.

FREE WILL

Free will and consciousness are often considered identical. Conscious decisions are considered
fredy willed. However, this point of view is unjudtified. The firg argument againg free will is
that, physiologicaly and psychologicdly, it is clear that conscious decisons are far from
unpredictable. They are influenced very strongly by unconscious memories and biases, i.e. by
parts of the brain which have no direct role in consciousness. This argument might be
contradicted as follows: perhgps other influences bias consciousness, but they do not determine
its behavior completely. They influence the likelihood of consciousness making one decision or
another, but this only permits us to predict the outcome of consciousness in arough probabilistic

sense.

But, if thisisthe case, then how does consciousness actualy make a choice? Empiricaly,

there is no way of distinguishing between the hypothesis that a choice is made by free will, and
the hypothesisthat it is made at random subject to the probability distribution induced by
outside influences.

So the existence of free will is essentidly amoot point. | suspect that, in the future, it will be
more fruitful to andyze free will as an emotion. To see how this might be done, consider
Nietszche's andysis of "freedom of the will" as

the expression for the complex sate of ddight of the person exercising volition, who
commands and at the same time identifies himsdf with the executor of the order -- who, as such,
enjoys aso the triumph over obstades, but thinks within himsdlf thet it was redlly hiswill itself
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that overcame them. In thisway the person exercising volition adds the fedings of ddight of his
successful executive ingruments, the useful 'underwills or undersouls -- indeed, our body is but
asocia structure composed of many souls -- to hisfedings of ddight as commander. L' effet
c'est moi: what hagppens here is what happens in every wdl-constructed and happy
commonwedth; namely, the governing dassidentifies itsdf with the successes of the
commonwealth. (1968, p.216)

The feding of free will, according to Nietszche, involves 1) the feding that thereisindeed an
entity cdled a"sf", and 2) the assignation to this "sdf" of "responghbility” for onésacts. Itis
easy to see how such afeding would falunder the category of happiness, becauseit certainly
does serve to impose asmple "order” on the confusing interplay of patterns underlying menta
action.  But what isthis pattern called the "sdf", which the mind recognizesin its own
operation? Given a definition of "sdlf", free will could be defined as the emotion resulting from

the "belief" or "recognition of the pattern” thet, in the absence of the sdif, effective pattern
recognition (i.e. happiness) would not be possble. But even then the question why this belief
would emerge would not be answered. Clearly there is agreet dedl of subtlety involved here, and
we do not yet possess the tools with which to probe it.

EMOTION, COMPUTATION AND CONSCIOUSNESS

Regarding the emotiond capacity of computers, Paulhan's theory yields an ambiguous verdict.
Emotion is andyzed to involve a certain characteristic structure. One may say thet this
characterigtic structure only becomes true emotion when it enters consciousness, in which case it
might well be that a quantum computer but not a Turing machine can experience emation. Or, on
the other hand, one may say that this structure is always emaotion, whether or not it is
conscioudy experienced. Essentidly thisis amatter of semantics.

Mandler (1975) has made a smilar point, observing that emotions have a"hot" aspect and a
"cold" aspect. The cold aspect is the abstract structure of nonfulfillment of expectation. The hot
aspect has to do with the presence of certain chemicd factors which cause the vivid, viscerd
experience of emotion. One might say aso that the cold aspect has to do with mind, the hot
agpect with body. It may be that consciousnessis a prerequisite for "hotness'. The hot aspect of
emotion is the bodily effect of the aogtract menta nonfulfillment of expectation. The means by
which this effecting takes place -- by which structure affects chemicd leves -- isessentidly
unknown.

And, if consciousnessis a prerequisite for emation, isit perhaps aso true that emotionisa
necessary part of consciousness? It iswell known that, when a person summons something from
long-term memory into consciousness, the limbic system is activated. The exact reason for thisis
amydsery, but it is aso wel known that the limbic system is the center of emotion. This reflects
apsychologica concept that goes back at least to Freud, who suggested that it may be
impossible to remember something unless that something possesses some emotiona content.

This"Freudian” hypothesis coincides well with the present model of mind. We have

hypothesized that consciousness contains the mogt " prominent” patterns in the mind, where a
"prominent” pattern is both intense as a pattern, and the object of agreat dedl of activity onhigh
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levels of the motor control hierarchy. Isit not reasonable that a great ded of activity will center

around those ingructions which are not obeyed the first time around? Merdly by virtue of their

failure, they will receive more atention -- they have to be tried again, or aternatives have to be
found.

In conclusion: al that can be said with certainty is that consciousness and emation are closely
related. The nature of thisrelation is not yet clear. It appears that emotion may be understood to
consgst of two aspects. "hot" and "cold”, or perhgps "conscious' and "structurd™. Perhgpsthe
Structura aspect of emotion may exist independently of the conscious, hot aspect; but in practice
the two seem to usually occur together.

12

The Master Network

12.0 The Structure of Intelligence

The ideas of the previous chapters fit together into a coherent, symbictic unit: the master
network. The master network is neither a network of physica entities nor asmple, clever
agorithm. It israther avast, salf-organizing network of salf-organizing programs, continualy
updating and restructuring each other. In previous chapters we have discussed particular
components of this network; but the whole is much more than the sum of the parts. None of the
components can be fully understood in isolation.

A Hf-organizing network of programs does not lend itsdf well to description in alinear
medium such as prose. Figure 11 is an attempt to give a schematic diagram of the synergetic
dructure of the whole. But, unfortunately, there seems to be no way to summarize the al-
important detailsin a picture. In Appendix 1, lacking amore elegant gpproach, | have given a
systematic inventory of the structures and processes involved in the master network:
optimization, parameter adaptation, induction, analogy, deduction, the structurally associative
memory, the perceptud hierarchy, the motor hierarchy, consciousness, and emation.

These component structures and processes cannot be arranged in alinear or tredlike structure;
they are fundamentally interdependent, fundamentaly a network. At first glance it might gppear
that the master network isimpossible, since it contains so many circular dependencies. process A
depends on process B, which depends on process C, which depends on process A. But, as
indicated in the previous chapters, each process can be executed independently -- just not with
maxima effectiveness. Each process must do some proportion of its work according to crude,
isolated methods -- but this proportion may be reduced to a smal amount.
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Figure 11 and Appendix 2 provide the background necessary for my centra hypothesis: that
the master network is both necessary and sufficient for intelligence.

Asin Chapter 4, let us define general intelligence as the average of L-intdligence, S
intelligence, and R.S--intelligence, without specifying exactly what sort of average isinvolved.
Then, using the idess of Chapters 4 and 5, one may essily prove the following:

Theorem 12.1: For any computable set of patterns C, and any degree D of  generd
intelligence, there is some master network which has generd intelligence D relative to C.

However, it isaso clear from Chapter 5 that most of the master network is not essentid for this
result. In particular, we have:

Theorem 12.2: Theorem 12.1 holds even if the perceptual and motor  control hierarchies only
have one leve each, and even if the global optimizer works by the Monte Carlo method.

In fact, even this assumes too much. The essentia core of the master network consists the
induction processor, the globa optimizer and the parameter adaptor. One may show

Theorem 12.3: Theorem 12.1 holds even if dl perception, inductionand  parameter adaptation
are executed by Monte Carlo optimization, andthe  analogy and deduction processors do not
exig.

FEASIBLE INTELLIGENCE

The problem is that Theorem 12.1 and its offshoots do not say how lar ge a master network
needs to be in order to attain a given degree of intelligence. Thisis @solutdy crucid. As
discussed in Chapter 11, it is not physicaly possible to build a Turing machine containing
arbitrarily many components and aso working reasonably fast. But it is aso not possible to build
a quantum computer containing arbitrarily many components and aso working reasonably fast.
Quantum computers can be made smdler and more compact than classica Turing machines, but
Panck's congtant would appear to give aminimum limit to the Size of any useful quantum
computer component. With thisin mind, | make the following hypothesis

Hypothesis 12.1: Intdligent computers satisfying the redrictionsimposed by  Theorem 12.3,
or even Theorem 12.2, are physically impossible if Cis, say, the set of al N'th order Boolean
functions (N isavery large number, say ahillion or atrillion).

Thisisnot apsychologica hypothess, but it has far-reaching psychologica consequences,
especialy when coupled with the hypotheses made at the end of Chapter 4, which may be
roughly paraphrased as

Hypothesis 12.2: Every generdly intdligent sysem, rdaivetothe C  mentioned in the
Hypothesis 12.2, contains amaster network as a Sgnificant part of its structure.
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Taken together, these two hypotheses imply that every intelligent system containsevery
component of the master network.

In conclusion, | think it is worth getting even more specific:

Hypothesis 12.3: Intdligent computers (relaive to the C mentionedin - Hypothesis 12.2) in
which a high proportion of the work of each component of the master network is done
independently of the other components -- are physicaly impossible.

All this does nat imply thet every intdligent system -- or any inteligent system -- contains
physicaly distinct modules corresponding to "induction processor”, "structurally associative
memory," and so on. The theorems imply that the master network is a sufficient structure for
intelligence. And the hypotheses imply that the master network anecessary part of the structure
of inteligence. But we mugt not forget the definition of structure. All that isbeing cdlaimed isthat
the master network isa dgnificant pattern in every intdligent sygsem.  According to the
definition given in Chapter 4, this means that the master network is a part of every mind. And,
referring back to the definition of pattern, this means nothing more or less than the following:
representing (looking at) an intelligent system in terms of the master network always yields
a sgnificant amount of smplification; and one obtains more smplification by using the
entire master network than by using only part.

PHILOSOPHY OR SCIENCE?

To demondtrate or refute these hypotheses will require not only new mathematics but dso new
science. It is clear that, according to the criterion of falsfication, the hypotheses are indeed
scientific. For instance, Hypothesis 12.2 could be tested asfollows:

1) prove that sysem X isintelligent by testing its ability to optimize a variety of complex
functionsin avariety of sructurdly sengtive environments

2) write the physica equations governing X, mathematicaly determine the set of dl patternsin
X, and determine whether the master network is a sgnificantpart of this set

We cannot do this experiment now. We must wait until someone constructs an gpparently
intelligent machine, or until neuroscientists are able to derive the overal sructure of the brain
from the microscopic equations. But, smilarly, no oneis going to make a direct test of the Big
Bang theory of cosmology or the theory of evolution by natura sdection, at least not any time
soon. Sometimes, in science, we must rely on indirect evidence.

The theory of natura sdection is much smpler than the theory of the master network, so
indirect evidence isrelatively easy to find. The Big Bang theory isadightly better andogy: it is
not a al smple or direct. But the theories of differentid geometry, functiond andyss,
differential equations and so forth permit us to deduce awide variety of indirect consequences of
the origind hypothesis. In principle, it should be possible to do something similar for the theory
of the master network. However, the master network involves a very different sort of
mathemdtics -- theoretica computer science, dgorithmic information theory, the theory of
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multiextrema optimization, etc. These are very young fields and it will undoubtedly be difficult
to use them to derive nontrivia consequences of the theory of the master network.

12.1 Design for a Thinking Machine

A theory of mind and atheory of brain are two very different things. | have sketched an
abgtract Platonic structure, the master network, and claimed that the structure of every intelligent
entity must contain a component approximeating this structure. But it would be folly to deny that
different entities may approximate this sructure in very different ways.

A generd sudy of the emergence of minds from physical sysems would require agenerd
theory of networks of programs. But of course no such theory presently exists (see Appendix 2
for asummary of certain prdiminary resultsin the field). Thus we cannot give a comprehensive
answer to the question: what sorts of machines, if constructed, would be able to think? In talking
about thinking machines, we will have to be contented with very specidized consderations,
improvising on the themes of computer science and neuroscience.

Mogt of the workings of the brain are till rather obscure. We have an excdlent understanding
of the workings of individud brain cdls (Hille, 1984); and we have long known which regions of
the brain concentrate on which functions. What is lacking, however, is a plausble theory of the
intermediate scale. The study of the visua cortex, reviewed above, has brought us a greet ded
closer to thisgod. But even here there is no plausible theory relating thoughts, fedings and
"mind's-ey€"’ pictures to the microscopic details of the brain.

In Chapters 6 and 10, lacking atruly effective theory of intermediate-level brain structure, we
have made use of what | consder to be the next best thing: Edelman’'s "Neurd Darwinism,” a
dightly speculative but impressvely detailed modd of low-to-intermediate-scale brain structure.
| suspect that Neurd Darwinism isincgpable of explaining the higher levels of cognition and
memory; but, be that as it may, the theory is nonetheless essential. As suggested in Chapters 6
and 10, it indicates how one might go about establishing a nontrivia connection between brain
and mind. And furthermore, it leadsto severd interesting ideas as to how, given sufficient
technology, one might go about congtructing an intelligent machine. In dlosing, let us sketch one
of these idess.

OMPs, AMPsand nAMPs

Inwhat follows | will speculate asto whet globd neurd structure might conceivably look
like. This should not be considered a theory of the brain but adesign for abrain, or rather a
sketch of such adesign -- anindication of how one might draw blueprints for athinking
machine, based loosdly on both the idea of the master network and the theory of Neurd
Dawinism. The "zero levd" of this desgn condsts of rdatively sophidticated
"optimization/memory processors’ or OMPS, each of which stores one function or afairly small
st of related functions, and each of which has the capacity to solve optimization problems over
the space of discrete functions -- e.g. to search for patternsin an input -- using the functions
which it Sores asinitid guesses or "modes’. For ingtance, the multi-leveled "Neurd Darwinig”
network of maps described at the end of Chapter 10 could serve as an OMP. It is biologically
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plausible that the brain is composed of anetwork of such networks, interconnected in a highly
Structured manner.

Next, define an "andogy-memory processor,” an AMP, as a processor which searches for
patternsinits input by sdlecting the most gppropriate -- by induction/analogy/deduction -- from
among an assigned pool of OMPs and setting them to work on it. Each AMP is associated with a
certain specific subset of OMPs; and each AMP must contain within it procedures for genera
deductive, inductive and andogica reasoning, or reasonable gpproximations thereof. Also, each
AMP must be given the power to reorganize its assgned pool of OMPs, so asto form a
structuraly associative memory. There should be alarge amount of duplication among the OMP
pools of various AMPs.

And smilarly, define a"second-level andogy-memory processor,” a 2AMP, as a processor
which assgnsto a given input the AMP which it determines -- by induction/and ogy/deduction --
will be most effective at recognizing patternsin it. Define a SAMP, 4AMP, etc., andogoudy.
Assume that each NnAMP (n>1) refers to and has the power to reorganize into rough structura
associativity a certain pool of (n-1)AMPS.

Assume aso that each NnAMP, n=2,..., can cause the (n- 1)AMPs which ituses frequently to be
"replicated” somehow, o that it can use them as often as necessary. And assume that eech AMP
can do the same with OMPs. Physically speaking, perhaps the required (n-1)AMPs or OMPs
could be put in the place of other (n-1)AMPs or OMPs which are dmost never used.

A high-level NnAMP, then, isa sort of fractal network of networks of networks of networks...
of networks. It is, essentidly, an additional control structure imposed upon the Neural Darwinist
network of maps. | suspect that the Neurd Darwinist network of maps, though basicaly an
accurate model, isinadequately structured -- and that, in order to be truly effective, it needsto be
"steered” by externa processes.

| will venture the hypothesisthat, if one built anAMP with, say, 15 levels and roughly the Sze
and connectivity of the human brain -- and equipped it with programs embodying asmall subset
of those specid techniquesthat are aready standard in Al -- it would be abdle to learn in roughly
the same way as a human infant. All the most important aspects of the master network are
implicitly or explicitly present in the nAMP: induction, pattern recognition, analogy, deduction
sructurdly associative memory, and the perception and motor control hierarchies.

In conclusion: the NAMP, whatever its shortcomings, is an example of adesign for an
intelligent machine which is neither Al-style nor neura-network-gtyle. It is neither an ordinary
program nor an unstructured assemblage of programs, nor a self-organizing network of neurons
or neura clusters without coherent globa gtructure. It isaprogram, and a network of physica
entities -- but more importantly it isanetwork of networks of networks ... of networks of
programs; a network of networks of networks... of networks of neurd clusters. In this context it
seems gppropriate to repeat Hebb's words, quoted above: "it is... on aclass of theory that |
recommend you to put your money, rather than any specific formulation that now exists" The
details of the NAMP are not essential. The point is that, somehow, the dynamics of neurons and
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synapses must intersect with the abstract logic of pattern. And the place to ook for this
intersection isin the behavior of extremely complex networks of interacting programs.

Appendix 1

Components of the Master Network

Structure: Perceptud Hierarchy

Internal Structure: Composed of ahierarchy of levels eachlevel  containing anumber of
processors which may interact with each other and with processors on lower or higher levels.

Internal Processes. Each processor obtains input from processors — on lower leves, and sends
output to processors operating on higher levels. Each processor operates by guessing the most
likely, Smplest "redlity” underlying its input, usng Bayes rule and probably, on lower levels, the
maximum entropy principle.

Therange of posshilitiesis given by hard-wiring and/or induction and/or deduction and/or
andogy; the a priori background digtribution is given by hard-wiring and/or induction and/or
deduction and/or andogy; and the properties of potentid redlities are given by hard-wiring
and/or induction and/or deduction and/or andlogy. As one goes higher and higher up the
hierarchy, induction, analogy and deduction are relied upon more heavily, and the estimation
sticks closer and closer to the background distribution. And as induction, analogy and deduction
are relied upon more heavily, the processing becomes dower and dower.

Information is passed from the top down when a processor tells one of the processors that
givesit input what sort of things it should look for. This overal regulation operates according to
the multilevel optimization methodology.

Dependencies: Induction processor, deduction processor, analogy processor

Functions. Supplies the induction processor and the parameter adaptor with the pattern
recognition they require.

Structure: Motor Control Hierarchy

Internal Structures. Composed of a hierarchy of levels, each level containing anumber of
processors which may interact with each other and with processors on lower or higher levels.

Internal Processes. Each processor gives processors on lower levels goals, and each processor

refers to the parameter adaptor for information on how to achieve these goa's. The success of
each processor is continually relayed to the parameter adaptor.
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Dependencies. Parameter adaptor.

Functions: Directly controls the action of the system; the effect of mind on body and therefore
world.

Structure: Structuraly Associative (Long-term) Memory

Internal Structures: A network of processors, each one containing a certain pattern, which is
continualy reorganizing itself to gpproximate the

dructure of a network of emergence (i.e. of anetwork inwhich X and Y are
stored near dl functions which are patterns emergent between X and Y). Any

particular pattern may be stored in anumber of different places. Along with each paitern is
stored the parameters by which the globa optimizer can best recognize patternsin it.

Internal Processes: Reorganization must follow some specia-case optimization agorithm. In
order for dructurally associative organization to be possible, it must be known what functions
are patterns in what functions.

Dependencies. Perceptua hierarchy (for pattern recognition).

Functions Andogy could not exist without it.

Structure: Analogy Processor

Internal Structures: Must contain processors capable of applying the generd andogy agorithm
to many functions at once.

Internal Processes. Searches for patterns according to genera anadogy dgorithm, which requires
numerous searches through structurally associative memory and aso, in the case of modding
andogy, special-case globa optimization in order to invert certain functions. May determine
which types of andogy to use according to anaogy.

Dependencies. Structurdly associative memory, globa optimizer.

Functions: Guides the perceptua hierarchy in its pattern recognition; guides the process of
deduction.

Structure: Induction Processor
Internal Structures/Processes: Must be able to continualy takein large sets of patterns and
operate on them according to rapid, specidized gpproximation agorithms so as to construct a

consistent model of the world. Parameters of these agorithms may be modified by parameter
adaptor.
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Dependencies: Perceptua hierarchy (for the patternsit takes as input), parameter adaptor.
Functions: Aidsthe perceptua hierarchy in its recognition of patterns.

Structure: Deduction Processor

Interna Structures/Processes: Must be able to rapidly carry out chains of deductions according to
hard-wired or otherwise specified rules. Which chains of deductions are executed is determined
by an optimization routine whose initid guesses are determined by andogy. Which sets of rules
are used may aso be determined, to some extent, by parameter adaptation.

Dependencies: Andogy processor, globa optimizer, parameter adaptor.

Functions. Guides the perceptua hierarchy.

Structure: Parameter Adaptor

Interna Structures/Processes: Executes a specific set of optimization problems, some involving
pattern recognition, induction and anaogy

Dependencies: Induction processor, analogy processor, perceptud hierarchy globa optimizer.

Functions. Guides the motor control hierarchy and, to alesser extent, the deduction, induction
and andogy processors. Supplies the structurdly associative memory with information.

Structure: Globad Optimizer

Internal Structures/Processes: Minimizes and maximizes functions according to some widely
gpplicable strategy. Adapts the particulars of its strategy to the nature of the function in question.

Dependencies. Parameter Adaptor.

Functions. Aids the parameter adaptor, the analogy processor and the deduction processor.
Process. Consciousness

Related Structures. Resides, gpparently, fairly high up on the perceptud and motor control
hierarchies, venturesinto al regions of the mind but never too far from there (e.g. never too
deeply into the gtructuraly associative memory).

Functions: According to the quantum theory of consciousness, consciousness has no
determinigtic effect on menta function; it israther the means by which the mind participatesin

the creation of the world.

Phenomenon: Emotion
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Redlated Structures: It is hypothesi zed that emotion occurs when a processor in the motor control
hierarchy which notably failsto reach its god isdso a part of consciousness.

Functions: Emotion, like consciousness, appears to serve no determinigtic role in mental
function. It is, however, a necessary consequence of sgnificant menta change in any conscious
system.

Appendix 2

Automata Networks

The magter network isalarge, intricately interconnected network of programs. In this context,
it isinteresting to ask: what, in generd, is known about the behavior of large interconnected
networks of programs? The most important work in thisareais Stuart Kauffmann's (1988) theory
of random automata networks, which was initiated in the late 1960's. Kauffmann's method is
very smple: consgtruct networks of N random Boolean automata (i.e., programs), connect them to
each other, and let them run for thousands of iterations. His results, however, are striking. Let K
denote the number of other automata to which each automaton is connected.

One of Kauffman'sfirst questions was: what is the long-term dynamicd behavior of the
networks? Since the networks are finite, for any given initid condition each one must eventudly
converge to astable state or lock into a repetitive "limit cycle” (say, from dtate 1 to state 2 to
gate 3, and then back to Sate 1). The question is, how many different limit cycles are there, and
how many distinct states are involved in each cycle? Where k=1, the networks operate in a
largely independent, well-understood manner. Where k=N, the case of complete connectivity, the
problem isdso andyticaly soluble. For intermediate k, there is as yet no mathematical answer
to Kauffmann's quedtion -- but in every case, the numerical results are extremely clear. Thetota
number of attractors (Steedy states or limit cycles) isroughly proportional to the number of
automata in the network. But the average period of acycle is exponentia in the number of
automata. Thus an arbitrary automata network, supplied an arbitrary initid condition, will dmost
certainly display "pseudo-chaotic" behavior -- it will eventudly lock into acycle of datesthet is
50 long as not to be humanly recognizable asacycle.

Thistdls uslittle about the behavior of highly structured automata networks like the master
network. But Kauffmann's more recent work (1988) tells us a bit more. He has set up a network
of automata according to a certain scheme called the "NK mode". Each automaton seeks to
optimize its state according to certain criteria, and the criteria used by each automaton depend in
acertain way upon the states of certain other automata. His modd is very specific, but
philosophicaly, it represents a very common Stuation: anetwork of programseach optimizing
some function of an environment which is continually changed by the action of each program.
His network is much smpler than the master network, but there are certain qualitative
gmilaities it is much closer to the master network than is arandom automata network.
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Kauffman's main result regarding the NK modd isthat the interdependence of criteriamakes a
tremendous qudlitative difference. If the criteriafor each optimizing automaton were
independent of the other automata, then as the optimization problems became more and more
complex, the approximate optima found would be further and further from the true optimum.
And thisistrue in the interdependent casg, if the number of other automeata to which each
automaton is connected is increased proportiondly to the complexity the problem. But if the
complexity of the problem is increased while the connectivity is kept much smdler, the network
tends to settle into a sate in which each automaton can solve its problem relatively well.

| am being vague about the exact nature of Kauffmann's NK model becauseiit is not relevant
here. The modd istied to evolutionary biology rather than psychology or neuroscience. But
amilar results have been obtained from models of the immune system (Kauffmann et d, 1985);
and it isonly amatter of time until someone attempts a smilar mode of the Smpler aspects of
neurodynamics. What interests us here is Kauffman's genera conclusion:

[1]t is areasonable bet that low connectivity... is a sufficient and perhaps necessary fegture
in complex systems which must be perfected in the face of conflicting condraints... which are
themselves complex adapting entities with many parts and processes which must mesh well to
meet their externa worlds.... [L]ow connectivity may be acritical feature of coadaptation of
entities....

The mind and brain are clearly systems of the sort Kauffmann describes.

The nAMP meets the criterion of low connectivity, because its Sructure is based on hierarchy,
and inherently low-connectivity inter-neura-cluster connections. And, in genera, the master
network meets the criterion of low connectivity: in the STRAM each memory item is directly
connected to only asmall proportion of others; in the perceptua and motor hierarchies each
processor is connected to only afew processors on the same or immediately adjacent levels; etc.

Admittedly, the observation that the master network has low connectivity is not particularly
exciting or profound. If it did not have low connectivity, it could not feasibly be constructed. But
it is enchanting to think that it might somehow be possible to use the generd theory of automata
networks to deduce more interesting properties of the network of programsthat is the brain, or
the network of programsthat is the mind. This would be the exact opposite of the psychologica
approach to mind. Instead of explaining particular behaviors with highly specific ad hoc theories,
one would be andlyzing the overal structure and dynamics of intelligence from a perspective
indusive of dl complex sdf-organizing systems. minds, brains, ecosystems, immune systems,
bodies,....

Appendix 3

A Quick Review of Boolean Logic
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Leibniz was probably the first person to make a serious attempt to anayze thought
mathematicaly. But Leibniz's pioneering efforts in this direction never ingpired much
enthusiasm. The project never redly got off the ground until George Boole published Laws of
Thought. Boole, like Leibniz before him, had the idea of formulating a mathematical theory
which does for ideas what ordinary algebra does for numbers. And, unaware that Leibniz had
worked on the problem, he began by duplicating Lebniz's efforts.

One might think that an algebra of thought would have to be something drameticaly new. But
in fact what Leibniz and Boole independently conceived was a synthesis of numerica agebra
and ordinary language. Anthropologicaly, one might observe that, having committed themselves
to expressing thoughts in terms of sequences of ink marks, they turned immediatdly to the two
best-developed systems of sequences of ink marks. They arrived at the concept of a

"proposition.”
PROPOSITIONS

A propogtion isasmply a satement which is either true or fase, and not both. For instance,
it ssemsfairly clear that "George Boole wrote a book caled "Laws of Thought" and "Thereisan
Arab ruler who can play the bagpipes through hisear" are propositions. Thefirst oneistrue and,
asfar as| know, the second isfase. On the other hand, it so seemsfairly clear that "lone Skye
isten times prettier than Kim Basnger" and "Why are you reading this claptrap?' and
"XXXXPPGttkeykeykey" are not propostions. Thefirg isnot redly well-defined, and the
second and third are not statements at dl.

Strictly spesking, propositions are not sentences. A proposition is an absiraction. A sentence
can represent aproposition. But two different sentences can represent the same proposition. For
ingance, "The U.S. iscapitaist and Russais socidist” represents the same propostion as
"Russais socidist and the U.S. is capitdis.” The two sentences are not word-for-word identical,
but they are equivalent in the sense that if ether one istrue, then theother istrue; and if ether
oneisfase, then the other isfase.

One way to ded with this Stuation isto introduce the strange notion of possible worlds. That
is condder the set of all universesthat might possibly exist. Then a proposition may be
consdered as asort of cosmic labdling device which assigns to each possible universe either the
labd "true" the labd "fase" or thelabd "meaningless’ -- depending on whether, given the
conditions of that universe, the proposition istrue, false or meaningless. And it is clear that two
statements which assign the same label to every universe correspond to the same proposition.

For example, to a universe in which the Bolshevik revolution failed and Russa became a
democratic-capitaist condtitutional monarchy like England, the proposition "The U.S. is
capitdist and the Russais socidigt” would assign the labe "fase™ In that universe, the
propogtion isfase. To auniverse in which acomet pulverized the earth in 10,000 B.C., the
proposition "The U.S. is capitdist and Russais socidis” would assign the labd "meaningless’ -
- inthat universe, thereis no such thing asthe U.S. To our universe, of course, this propostion
would assign the labd "true”. And it would also assign the labd "true’ to an infinity of dternate
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possible universes -- for example, the universe which is exactly the same as ours except that the
last word in this sentence is not "pomegranates.”

There are certain propositions, such as"2+2=4," which we would like to say aretruein any
possible world. Philosophers refer to propostions of this sort as analytic propositions. More
poeticaly, Saint Augustine called them "eternd verities™ Those propositionswhich are truein
some possible worlds but falsein others are called contingent propostions. This diginction is
interesting from ametaphysica point of view, and it is particularly rdevant to the theory of mind
if one takes a Nietzschean point of view. According to Nietzsche, true propositions are true only
in that they are S0 extremey ussful we cannot imagine giving them up. In thisinterpretation an
andytic propogtion is one which is useful to an intelligent entity in any environment
whatsoever.  The possible worlds approach obvioudy rests upon shaky ground: after al, how
do we decide which worlds are possible? We only livein oneworld, al the rest are just
conjecture.  However, it isindisputable that each of us makes hisway through the world by
continualy speculating as to how the future might turn out, and aso how the past might have
been. In each of our minds, there is an array of possble worlds. It turns out that the notion of
possible worlds dso arisesin the andlysis of consciousness.

BOOLEAN ALGEBRA

The fundamenta operations of numerica agebra are addition and multiplication.
Correspondingly, Boole suggested, the fundamenta operations of mental agebramust be "or"
and "and" (digunction and conjunction). In order to write these menta operations, Boole
borrowed the notation of numericadagebra. For ingtance, if we set

X ="George Boole wrote abook caled Laws of Thought"

and
Y ="Thereisan Arab nation whose ruler can play the bagpipes through hisear,"
then
X+Y ="Either George Boole wrote a book called Laws of Thought, or thereisan
Arab nation whose ruler can play the bagpipes through hisear.”
and
XY ="George Boole wrote a book caled Laws of Thought, and there isan Arab
nation whose ruler can play the bagpipes through his ear.”

That is, in Booles notation, "X and Y" iswritten XY, and "X or Y" iswritten X+Y.
Now, addition and multiplication are only two of the four operations of numerica dgebra.

Wheat about subtraction and divison? It turns out that thereisno red counterpart to divisonin
the realm of propositions. But subtraction is a different matter. Subtraction, Boole observed, is
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andogous to negation. In his scheme, "minus’ in the realm of numbers corresponded to "not” in
the realm of thought. So, for example, where X is as defined above,

-X ="George Boole did not write abook caled Laws of Thought"
and

-Y ="Thereisnot an Arab nation whose ruler can play the bagpipes through his

In numerica agebra, we have the rule X+0=X, for any X whatsoever. In the Boolean scheme,
this rule can be trandated into the agebra of thought by using the symbol "0" to dencte the
"empty proposition,” the proposition which says nothing whatsoever. In symbols. 0="". The
datement X+0thenmeans  "either X, or nothing whatsoever." And since "either X, or nothing
whatsoever" is true whenever X istrue, and false whenever X isfdse, itisequivaent to X. By
gmilar reasoning, it follows that OxX=0.

Boolean dgebra has its own set of rules, smilar but not equivadent to the rules of numerica
agebra. For instance, in Boolean algebra-X +-Y =- XY. Thisiseasy to see-- dl it meansis
that "ether x isfase or y isfdsg" isthe same as "not both x and y are true.” But the samerule
obvioudy does not hold for numerica agebra The completelist is asfollows, where O isthe
"zero dement” (the propogtion which says nothing) and 1 isthe "unit ement” (the proposition
which contains dl other propostions):

Commutative Laws

X+Y=Y+X, XY=YX
Didributive Laws:

XHYZ)=(X+Y)(X+Z), X(Y+2)=XY+XZ
|dentity Laws:

X+0=0, 1X=X
Complement Laws.

A+(-A)=1, A(-A)=0

These rules form an interesting and important mathematica structure. However, it seems
rather unlikely that they are the "laws of thought”, for three reasons.

For one thing, they govern only deduction, wheress (as will be emphasized in the pages to
follow) induction and andogy are equally important to menta process. | think it isamistake to
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assume, asis often done among computer scientists (Indurkhya, 1988), that induction and
andogy may be understood as specia cases of deduction.

Also, itisnot at dl clear that the mind actualy deduces according to Boolean dgebra. As
pointed out in Chapter 8, there are serious contradictions between Boolean agebra and common
sense logic. Contemporary logicians are seeking to remedy these with new axioms systems
cdled "paraconsstent” and "relevance” logics, but the caseis far from closed.

And, findly, it is not obvious thet the brain gets dong well with Boolean agebra. For
indance, the digtributive rule X(Y +2) = XY + XZ seems very sraightforward: dl it saysisthat
"X andether Y or Z" isthesame as"ather X and Y or X and Z". However, quantum theory
indicates that when X, Y and Z represent propositions about physical Stuations, thisis not
adwaystrue. This Smple observation, first made by Birkhoff and von Neumann (1932) has given
riseto an entire new field: quantum logic (Mittel staedt, 1978).

LOGICAL PARADOXES

The firgt recorded logica paradox isthat of Epiminides the Cretan, who proclaimed that "All
Creansareliars” If we bdieve him, then we should disbdieve him. But if we didodieve him,
then that is evidence that we shouldbdieve him.

Of course, thisisavery rough paradox. After al, it could be that only Epiminidesisaliar.
What is generdly referred to as Epiminides Paradox is the refined verson: "This sentenceis
fdse" Herethereisno escape. If itisfasg itistrue if itistrue, itisfdse

Berry's paradox is equaly intriguing. Whét is the smalest number that cannot be described in
English in one hundred characters or fewer? Whatever it is, isit not described by the phrase "the
gmallest number that cannot be described in English in one hundred characters or less'? This
phrase isin English, and it uses fewer than one hundred characters. Therefore there is no number
that cannot be described in English in one hundred characters or less. And yet thisis not
possble thereis an infinity of numbers, but only afinite number of English sentences of length
less than one hundred.

And consder Russdll's paradox. The barber in a certain town shaves dl the residents except
those who shave themselves. Who shaves the barber? In mathematica language: let R denote the
et of al setswhich do not contain themsdalves. Does R contain itsdf?

For centuries such conundrums were considered childish irrdlevancies. But suddenly, around
the turn of the century, they came to assume a tremendous importance for philosophers and
mathemdticians.

Mathematical logicians had succeeded in unifying dl of mathematicsinto asmal set of rules
for manipulating asmal st of symbols-- into asmple "formd system”. Actualy there was not
just one forma system, there were many varieties. None of them was quite as Smple as Boolean
agebra, but most of them were smilar to it in many respects. Through the efforts of Peano,
Frege, Bertrand Russell, Alfred North Whitehead and others, everything from geometry to
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caculus to number theory was expressed in terms of these elementary idess. It appeared that
mathematics had finaly been made completely exact.

It isimportant to understand the full implications of this (gpparent) achievement. Firgt of al, it
implied that every sngle mathematical statement could be expressed in this one formd language
-- every statement about triangles, quadratic equations, calculus, nine-dimensiona spheres,
abgtract topologies, whatever. And secondly, it indicated that every single true mathematical
gatement -- but no fase mathematical satements -- could be arrived at by an gpplication of the
rules of this system. Therefore, doing mathematics was reduced to dedling with the symbols and
the rules of this system. Or so it was thought at the time.

But before long this tremendous legp, the result of decades of ingenious research, was plagued
with two serious difficulties -- both of which centered around smple conundrums like the
Paradox of Epiminides. The second, and most damaging, of these difficultieswas Godd's
Theorem. The first was the Theory of Types.

The formdizations of mathematics that they had arrived a permitted certain forms of these
paradoxes (Russdll's paradox in particular) as vaid mathematical statements. The problem was
the following demertary fact: if a system of mathematica rules permits one of these paradoxes
asvdid, then for every X whichisvdidinit, -X isaso vdid.

To seethis, assume for ingtance that Epiminides Paradox is an admissible satement in a
forma sysem Swhich incorporates Boolean dgebra. Let G = "Thissentenceisfdse”. Then G
implies-G, and -G impliesG. So if Gistruein S, then s0is-G. But given thisfact, one can
prove that any statement whatsoever istrue. For take an arbitrary statement B. Then, snceGis
true, "G + B" istrue. Hence -G(G+B)" istrue. But "-G(G+B)" implies B.

What good is asystem of mathematics which cannot prove any statement true without aso
proving it false? Not much good, everyone redlized -- you have to get rid of the paradoxes.
Russdll and Whitehead came up with one way of doing so: the theory of types. Thisis not
essentidly amathematicd idear it has more to do with the generd theory of reference. The
theory of types can be applied to any language, formd or informd. It is nothing more or lessthan
away of organizing aset of statements.

THE THEORY OF LOGICAL TYPES

In order to organize a set of statements according to the theory of types, one must first
distinguish a st of "basic dements.” These basic e ements are supposed to be what the
gatements are fundamentally about. For instance, they might be numbers, or physical objects.
These basic dements are assigned logicd type 0.

Next, one must isolate a set of statements which are stlatements about the basic dements.
These satements are assigned logicd type 1. For ingtance, if the basic dements are physica
objects, then satements like "the cat is on the mat" and "thelog isin the bog" are of logicd type
1.
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Next, one isolates a set of statements which are statements about either basic eements or type
1 satements, or both. These are assigned logica type 2. For instance, "Y ou were lying when you
sad the cat was onthe mat” is of logica type 2 -- it is a statement about a statement about
physica objects.  Similarly, astatement of logica type 3 is a statement about entities of logica
type 0,1 or 2. A statement of logica type 4 is a statement about entities of logica type0, 1, 2 or
3. And s0 on. What's the point of al this? Well, where does a statement like "This Statement is
fdse" fit in? It is a satement about itself. There is no way to reduce it to a tatement about basic
elements, or a statement about statements about basic eements, or a statement about statements
about statements about basic dements.... The point is that an statement of logical type n cannot
refer to another statement of logica type n. For instance, it cannot refer to itself.

If one requiresthat dl mathematica statements have alogicd type, then the paradoxes
disappear. They are no longer well-formed mathematical statements. Thereis a problem with
this, however: it dso rules out innocuous saf-referentid statementslike "This sentenceistrue.”
It is not paradoxical to say "this sentenceistrug’, and there is no red reason to forbid such
utterances.

It may seem that there is no great harm in getting rid of satements like "this sentenceistrue.”
After dl, what good did saying "this sentence istrue’ ever do anyone? But there is no need to
pursue this point, because the recent work of Paul Aczel has rendered it moot. He has given a
formaization of mathematics which permits nonparadoxica sdf-reference without permitting
paradoxica sdf-reference.

In fact, it turns out that not only is there no need to rule out “this sentence istrue” and other
innocuous sef-references -- but there are some circumstances where "vicious' self-references
like "this sentence isfdse" may comein handy. Certainly, we should forbid them to enter our
mathematical deductions. But the work of G. Spencer-Brown (1970), Gregory Bateson (1980)
and others has shown that, treated carefully, they can be useful.

The theory of typesisindirectly relevant to the perceptua/motor hierarchy as described in

Chapter 9, in which higher and higher levels may be understood to correspond to higher and
higher logicd types.
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